大模型在业务领域的应用是2024年的风向标,可能有些人还不知道如何去优化提示词,本文已新意图识别举例来展示优化过程。
提示词的目标是让大模型按照你的指令输出预期的结果。我们可以把大模型看作是一个工作助手(是一个”人“)。那么与人交流,就必须掌握与这个”人“的交流方式,这个交流方式就是提示词。
新意图识别一直是比较难的,传统的方式是聚类,但聚类准确性很低,也有人使用机器学习或深度学习的方式进行了大量的研究,但都停留理论可行,实际不太可行的层面。本文想通过新意图识别这个业务难题,来看看大模型是如何轻松解决的。
在与客户沟通过程中,通常都需要识别客户的意图,通过意图识别后,给予合适的回复。通常意图识别第三方接口都是使用检索的方式实现,主要是通用、成本低,若是使用机器学习或深度学习,一是不通用,二是需要标注,有大量的标注成本,大模型应用阶段,谁还愿意去标注呢?三是需要一定的算力成本。在大模型应用阶段,7B模型在1张T4卡上也可以跑2-3个实例了。离线应用场景比较适合使用大模型来实现,一是简单,二是操作也方便,三是需要一定的业务理解能力,输出结果需要符合业务人员的口味。
下面直接给出迭代过程(使用的是deepseek,本地可以使用qwen2.5):
一、先让大模型给模拟一段账单分期业务坐席与客户的对话
客服(张经理): 您好!我是来自XX银行的张经理,我们近期正在推广一款账单分期服务,可以帮助您轻松管理账单支付。请问现在是您可以接听电话的时间吗? 客户: 是的,您好!请问这方面的服务可以具体说明一