Ultra-Fast-Lane-Detection-v2道路标线检测环境部署及Visualization实现

Ultra-Fast-Lane-Detection-v2道路标线检测环境部署及Visualization实现


本文主要是对 cfzd/Ultra-Fast-Lane-Detection-v2的项目代码进行本地部署,针对的是ubuntu环境部署。简单记录一下环境部署的流程。

环境安装

直接查看官方INSTALL.md的1,2,3,4部分,我只着重讲一下第5部分。

opencv c++ 安装

1、仅构建核心模块

# Install minimal prerequisites (Ubuntu 18.04 as reference)
sudo apt update && sudo apt install -y cmake g++ wget unzip
# Download and unpack sources
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip
unzip opencv.zip
# Create build directory
mkdir -p build && cd build
# Configure
cmake  ../opencv-4.x
# Build
cmake --build .

2、安装

构建完成之后,还需要进行安装,直接在build目录下安装即可:

sudo make install

默认情况下,OpenCV 将安装到该*/usr/local*目录。
以上步骤完成之后还需要构建软连接:

# After installation, make a soft link of OpenCV include path.
ln -s /usr/local/include/opencv4/opencv2 /usr/local/include/opencv2

构建 CULane evaluation tools

方法1:

cd evaluation/culane
make

方法2:

cd evaluation/culane
mkdir build && cd build
cmake ..
make
mv culane_evaluator ../evaluate

Visualization

作者提供了脚本来可视化检测结果:

python demo.py configs/culane_res18.py --test_model /path/to/your/culane_res18.pth

configs/culane_res18.py需要添加下载的数据路径:

data_root= '/data/CULane' # Need to be modified before running
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值