【NLP实践-Task1 数据集探索】THUCNews&IMDB&常用评价指标

Tensorflow.keras

目录

1、THUCNews

1.1 数据集下载及介绍

1.2 预处理

1.3 搭建CNN模型

1.3.1 模型代码

1.3.2 模型结构

1.4 训练与验证

1.4.1 代码

1.4.2 开始训练

1.4.3 使用tensorboard查看训练集的误差曲线与准确率曲线

1.4.4 测试

2、IMDB

2.1 下载数据

2.2 探索数据

2.2.1 初探数据

2.2.2 将整数转换回字词

2.3 准备数据

2.3.1 维度填充

2.3.2 划分训练集与验证集

2.4 构建模型

2.4.1 网络

 2.4.2 损失函数和优化器

2.5 训练模型

2.6 评估模型

2.7 准确率和损失随时间的可视化图像

2.7.1 可视化指标

2.7.2 训练集与验证集损失可视化

 2.7.3 训练集与验证集准确率可视化

3、召回率、准确率、ROC曲线、AUC、PR曲线

3.1 召回率、准确率

3.1.1 定义

3.1.2 举例分析

3.2 ROC曲线

3.2.1 ROC曲线的优点

3.2.2 ROC曲线的缺点

3.3 AUC(Area Under the Curve)

3.4 PR(Precision Recall)曲线

3.5 使用场景

4、参考


 

1、THUCNews

1.1 数据集下载及介绍

百度网盘https://pan.baidu.com/s/1hugrfRu 密码:qfud

本数据集是清华NLP组提供的THUCNews新闻文本分类数据集的一个子集(原始的数据集大约74万篇文档,训练起来需要花较长的时间)。

本次训练使用了其中的10个分类(体育, 财经, 房产, 家居, 教育, 科技, 时尚, 时政, 游戏, 娱乐),每个分类6500条,总共65000条新闻数据。

数据集划分如下:

cnews.train.txt: 训练集(50000条)

cnews.val.txt: 验证集(5000条)

cnews.test.txt: 测试集(10000条)

1.2 预处理

预处理文件preprocess.py,代码中的函数说明如下:

read_file(): 读取文件数据;
build_vocab(): 构建词汇表,使用字符级的表示,这一函数会将词汇表存储下来,避免每一次重复处理;
read_vocab(): 读取上一步存储的词汇表,转换为{词:id}表示;
read_category(): 将分类目录固定,转换为{类别: id}表示;
to_words(): 将一条由id表示的数据重新转换为文字;
preocess_file(): 将数据集从文字转换为固定长度的id序列表示;
batch_iter(): 为神经网络的训练准备经过shuffle的批次的数据。

# coding: utf-8

import sys
from collections import Counter

import numpy as np
import tensorflow.contrib.keras as kr

if sys.version_info[0] > 2:
    is_py3 = True
else:
    reload(sys)
    sys.setdefaultencoding("utf-8")
    is_py3 = False


def native_word(word, encoding='utf-8'):
    """如果在python2下面使用python3训练的模型,可考虑调用此函数转化一下字符编码"""
    if not is_py3:
        return word.encode(encoding)
    else:
        return word


def native_content(content):
    if not is_py3:
        return content.decode('utf-8')
    else:
        return content


def open_file(filename, mode='r'):
    """
    常用文件操作,可在python2和python3间切换.
    mode: 'r' or 'w' for read or write
    """
    if is_py3:
        return open(filename, mode, encoding='utf-8', errors='ignore')
    else:
        return open(filename, mode)


def read_file(filename):
    """读取文件数据"""
    contents, labels = [], []
    with open_file(filename) as f:
        for line in f:
            try:
                label, content = line.strip().split('\t')
                if content:
                    contents.append(list(native_content(content)))
                    labels.append(native_content(label))
            except:
                pass
    return contents, labels


def build_vocab(train_dir, vocab_dir, vocab_size=5000):
    """根据训练集构建词汇表,存储"""
    data_train, _ = read_file(train_dir)

    all_data = []
    for content in data_train:
        all_data.extend(content)

    counter = Counter(all_data)
    count_pairs = counter.most_common(vocab_size - 1)
    words, _ = list(zip(*count_pairs))
    # 添加一个 <PAD> 来将所有文本pad为同一长度
    words = ['<PAD>'] + list(words)
    open_file(vocab_dir, mode='w').write('\n'.join(words) + '\n')


def read_vocab(vocab_dir):
    """读取词汇表"""
    # words = open_file(vocab_dir).read().strip().split('\n')
    with open_file(vocab_dir) as fp:
        # 如果是py2 则每个值都转化为unicode
        words = [native_content(_.strip()) for _ in fp.readlines()]
    word_to_id = dict(zip(words, range(len(words))))
    return words, word_to_id


def read_category():
    """读取分类目录,固定"""
    categories = ['体育', '财经', '房产', '家居', '教育', '科技', '时尚', '时政', '游戏', '娱乐']

    categories = [native_content(x) for x in categories]

    cat_to_id = dict(zip(categories, range(len(categories))))

    return categories, cat_to_id


def to_words(content, words):
    """将id表示的内容转换为文字"""
    return ''.join(words[x] for x in content)


def process_file(filename, word_to_id, cat_to_id, max_length=600):
    """将文件转换为id表示"""
    contents, labels = read_file(filename)

    data_id, label_id = [], []
    for i in range(len(contents)):
        data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])
        label_id.append(cat_to_id[labels[i]])

    # 使用keras提供的pad_sequences来将文本pad为固定长度
    x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length)
    y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id))  # 将标签转换为one-hot表示

    return x_pad, y_pad


def batch_iter(x, y, batch_size=64):
    """生成批次数据"""
    data_len = len(x)
    num_batch = int((data_len - 1) / batch_size) + 1

    indices = np.random.permutation(np.arange(data_len))
    x_shuffle = x[indices]
    y_shuffle = y[indices]

    for i in range(num_batch):
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id]

经过数据预处理,数据的格式如下:

1.3 搭建CNN模型

1.3.1 模型代码

cnn_model.py

# coding: utf-8

import tensorflow as tf


class TCNNConfig(object):
    """CNN配置参数"""

    embedding_dim = 64  # 词向量维度
    seq_length = 600  # 序列长度
    num_classes = 10  # 类别数
    num_filters = 256  # 卷积核数目
    kernel_size = 5  # 卷积核尺寸
    vocab_size = 5000  # 词汇表达小

    hidden_dim = 128  # 全连接层神经元

    dropout_keep_prob = 0.5  # dropout保留比例
    learning_rate = 1e-3  # 学习率

    batch_size = 64  # 每批训练大小
    num_epochs = 10  # 总迭代轮次

    print_per_batch = 100  # 每多少轮输出一次结果
    save_per_batch = 10  # 每多少轮存入tensorboard


class TextCNN(object):
    """文本分类,CNN模型"""

    def __init__(self, config):
        self.config = config

        # 三个待输入的数据
        self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x')
        self.input_y = tf.placeholder(tf.float32, [None, self.config.num_classes], name='input_y')
        self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')

        self.cnn()

    def cnn(self):
        """CNN模型"""
        # 词向量映射
        with tf.device('/cpu:0'):
            embedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim])
            embedding_inputs = tf.nn.embedding_lookup(embedding, self.input_x)

        with tf.name_scope("cnn"):
            # CNN layer
            conv = tf.layers.conv1d(embedding_inputs, self.config.num_filters, self.config.kernel_size, name='conv')
            # global max pooling layer
            gmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp')

        with tf.name_scope("score"):
            # 全连接层,后面接dropout以及relu激活
            fc = tf.layers.dense(gmp, self.config.hidden_dim, name='fc1')
            fc = tf.contrib.layers.dropout(fc, self.keep_prob)
            fc = tf.nn.relu(fc)

            # 分类器
            self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2')
            self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1)  # 预测类别

        with tf.name_scope("optimize"):
            # 损失函数,交叉熵
            cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y)
            self.loss = tf.reduce_mean(cross_entropy)
            # 优化器
            self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss)

        with tf.name_scope("accuracy"):
            # 准确率
            correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)
            self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

1.3.2 模型结构

images_cnn_architecture

1.4 训练与验证

1.4.1 代码

cnn_train.py。若之前进行过训练,请把tensorboard/textcnn删除,避免TensorBoard多次训练结果重叠。

# -*- coding: utf-8 -*-

from __future__ import print_function

import os
import sys
import time
from datetime import timedelta

import numpy as np
import tensorflow as tf
from sklearn import metrics

from cnn_model import TCNNConfig, TextCNN
from preprocess import read_vocab, read_category, batch_iter, process_file, build_vocab

base_dir = 'data/cnews'
train_dir = os.path.join(base_dir, 'cnews.train.txt')
test_dir = os.path.join(base_dir, 'cnews.test.txt')
val_dir = os.path.join(base_dir, 'cnews.val.txt')
vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')

save_dir = 'checkpoints/textcnn'
save_path = os.path.join(save_dir, 'best_validation')  # 最佳验证结果保存路径


def get_time_dif(start_time):
    """获取已使用时间"""
    end_time = time.time()
    time_dif = end_time - start_time
    return timedelta(seconds=int(round(time_dif)))


def feed_data(x_batch, y_batch, keep_prob):
    feed_dict = {
        model.input_x: x_batch,
        model.input_y: y_batch,
        model.keep_prob: keep_prob
    }
    return feed_dict


def evaluate(sess, x_, y_):
    """评估在某一数据上的准确率和损失"""
    data_len = len(x_)
    batch_eval = batch_iter(x_, y_, 128)
    total_loss = 0.0
    total_acc = 0.0
    for x_batch, y_batch in batch_eval:
        batch_len = len(x_batch)
        feed_dict = feed_data(x_batch, y_batch, 1.0)
        loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict)
        total_loss += loss * batch_len
        total_acc += acc * batch_len

    return total_loss / data_len, total_acc / data_len


def train():
    print("Configuring TensorBoard and Saver...")
    # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
    tensorboard_dir = 'tensorboard/textcnn'
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    tf.summary.scalar("loss", model.loss)
    tf.summary.scalar("accuracy", model.acc)
    merged_summary = tf.summary.merge_all()
    writer = tf.summary.FileWriter(tensorboard_dir)

    # 配置 Saver
    saver = tf.train.Saver()
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    print("Loading training and validation data...")
    # 载入训练集与验证集
    start_time = time.time()
    x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, config.seq_length)
    x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, config.seq_length)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)

    # 创建session
    session = tf.Session()
    session.run(tf.global_variables_initializer())
    writer.add_graph(session.graph)

    print('Training and evaluating...')
    start_time = time.time()
    total_batch = 0  # 总批次
    best_acc_val = 0.0  # 最佳验证集准确率
    last_improved = 0  # 记录上一次提升批次
    require_improvement = 1000  # 如果超过1000轮未提升,提前结束训练

    flag = False
    for epoch in range(config.num_epochs):
        print('Epoch:', epoch + 1)
        batch_train = batch_iter(x_train, y_train, config.batch_size)
        for x_batch, y_batch in batch_train:
            feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob)

            if total_batch % config.save_per_batch == 0:
                # 每多少轮次将训练结果写入tensorboard scalar
                s = session.run(merged_summary, feed_dict=feed_dict)
                writer.add_summary(s, total_batch)

            if total_batch % config.print_per_batch == 0:
                # 每多少轮次输出在训练集和验证集上的性能
                feed_dict[model.keep_prob] = 1.0
                loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict)
                loss_val, acc_val = evaluate(session, x_val, y_val)  # todo

                if acc_val > best_acc_val:
                    # 保存最好结果
                    best_acc_val = acc_val
                    last_improved = total_batch
                    saver.save(sess=session, save_path=save_path)
                    improved_str = '*'
                else:
                    improved_str = ''

                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                      + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str))

            session.run(model.optim, feed_dict=feed_dict)  # 运行优化
            total_batch += 1

            if total_batch - last_improved > require_improvement:
                # 验证集正确率长期不提升,提前结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break  # 跳出循环
        if flag:  # 同上
            break


def test():
    print("Loading test data...")
    start_time = time.time()
    x_test, y_test = process_file(test_dir, word_to_id, cat_to_id, config.seq_length)

    session = tf.Session()
    session.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess=session, save_path=save_path)  # 读取保存的模型

    print('Testing...')
    loss_test, acc_test = evaluate(session, x_test, y_test)
    msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
    print(msg.format(loss_test, acc_test))

    batch_size = 128
    data_len = len(x_test)
    num_batch = int((data_len - 1) / batch_size) + 1

    y_test_cls = np.argmax(y_test, 1)
    y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32)  # 保存预测结果
    for i in range(num_batch):  # 逐批次处理
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        feed_dict = {
            model.input_x: x_test[start_id:end_id],
            model.keep_prob: 1.0
        }
        y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)

    # 评估
    print("Precision, Recall and F1-Score...")
    print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


if __name__ == '__main__':
    if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
        raise ValueError("""usage: python run_cnn.py [train / test]""")

    print('Configuring CNN model...')
    config = TCNNConfig()
    if not os.path.exists(vocab_dir):  # 如果不存在词汇表,重建
        build_vocab(train_dir, vocab_dir, config.vocab_size)
    categories, cat_to_id = read_category()
    words, word_to_id = read_vocab(vocab_dir)
    config.vocab_size = len(words)
    model = TextCNN(config)
    # train()
    
    if sys.argv[1] == 'train':
        train()
    else:
        test()

1.4.2 开始训练

 cmd进入cnn_train.py所在路径,输入python cnn_train.py train,开始训练。

1.4.3 使用tensorboard查看训练集的误差曲线与准确率曲线

1.4.4 测试

cmd进入cnn_train.py所在路径,输入python cnn_train.py test,在测试集上进行测试。

在测试集上的准确率达到了96.69%,且各类的precision, recall和f1-score都达到了0.97。

从混淆矩阵也可以看出分类效果非常优秀。

2、IMDB

2.1 下载数据

英文数据集:IMDB数据集(可通过tensorflow下载) Sentiment Analysis

import tensorflow as tf
from tensorflow import keras
import numpy as np

# 下载数据集(如果已下载该数据集,则会使用缓存副本)
imdb = keras.datasets.imdb
# num_words=10000 会保留训练数据中出现频次在前 10000 位的字词。为确保数据规模处于可管理的水平,罕见字词将被舍弃。
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

2.2 探索数据

2.2.1 初探数据

每个样本都是一个整数数组,表示影评中的字词。每个标签都是整数值 0 或 1,其中 0 表示负面影评,1 表示正面影评。

# 查看样本数
print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))
# 查看第一个样本。影评文本已转换为整数,其中每个整数都表示字典中的一个特定字词。
print(train_data[0])
# 查看第一条和第二条影评中的字词数。影评的长度可能会有所不同,由于神经网络的输入必须具有相同长度,因此需要解决此问题。
len(train_data[0]), len(train_data[1])

2.2.2 将整数转换回字词

了解如何将整数转换回文本可能很有用。在以下代码中,我们将创建一个辅助函数来查询包含整数到字符串映射的字典对象。

# A dictionary mapping words to an integer index
word_index = imdb.get_word_index()

# The first indices are reserved
word_index = {k:(v+3) for k,v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2  # unknown
word_index["<UNUSED>"] = 3

reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])

def decode_review(text):
    return ' '.join([reverse_word_index.get(i, '?') for i in text])

使用 decode_review 函数显示第一条影评的文本:

decode_review(train_data[0])

2.3 准备数据

2.3.1 维度填充

影评(整数数组)必须转换为张量,然后才能馈送到神经网络中。我们可以通过以下两种方法实现这种转换:

  • 对数组进行独热编码,将它们转换为由 0 和 1 构成的向量。例如,序列 [3, 5] 将变成一个 10000 维的向量,除索引 3 和 5 转换为 1 之外,其余全转换为 0。然后,将它作为网络的第一层,一个可以处理浮点向量数据的密集层。不过,这种方法会占用大量内存,需要一个大小为 num_words * num_reviews 的矩阵。

  • 或者,我们可以填充数组,使它们都具有相同的长度,然后创建一个形状为 max_length * num_reviews 的整数张量。我们可以使用一个能够处理这种形状的嵌入层作为网络中的第一层。

在本教程中,我们将使用第二种方法。

由于影评的长度必须相同,我们将使用 pad_sequences 函数将长度标准化:

train_data = keras.preprocessing.sequence.pad_sequences(train_data,
                                                        value=word_index["<PAD>"],
                                                        padding='post',
                                                        maxlen=256)

test_data = keras.preprocessing.sequence.pad_sequences(test_data,
                                                       value=word_index["<PAD>"],
                                                       padding='post',
                                                       maxlen=256)

查看前2条影评的长度:

len(train_data[0]), len(train_data[1])

查看经过填充之后的第一条影评:

print(train_data[0])

2.3.2 划分训练集与验证集

从原始训练数据中分离出 10000 个样本,创建一个验证集。(之所以不创建测试集,是因为此次目标仅使用训练数据开发和调整模型,然后仅使用一次测试数据评估准确率。)

# 训练数据前10000条作为验证集
x_val = train_data[:10000] #验证集
partial_x_train = train_data[10000:] #训练集

y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]

2.4 构建模型

2.4.1 网络

# input shape is the vocabulary count used for the movie reviews (10,000 words)
vocab_size = 10000

model = keras.Sequential()
# Embedding 层:在整数编码的词汇表中查找每个字词-索引的嵌入向量。模型在接受训练时会学习这些向量。这些向量会向输出数组添加一个维度。生成的维度为:(batch, sequence, embedding)。
model.add(keras.layers.Embedding(vocab_size, 16))
# GlobalAveragePooling1D 层通过对序列维度求平均值,针对每个样本返回一个长度固定的输出向量。这样,模型便能够以尽可能简单的方式处理各种长度的输入。
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation=tf.nn.relu))
model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid))

model.summary() #查看网络信息

 2.4.2 损失函数和优化器

# binary_crossentropy 更适合处理概率问题,它可测量概率分布之间的“差距”,在本例中则为实际分布和预测之间的“差距”。
model.compile(optimizer=tf.train.AdamOptimizer(),
              loss='binary_crossentropy',
              metrics=['accuracy'])

2.5 训练模型

history = model.fit(partial_x_train,
                    partial_y_train,
                    epochs=40,
                    batch_size=512,
                    validation_data=(x_val, y_val),
                    verbose=1)

2.6 评估模型

# 模型会返回两个值:损失(表示误差的数字,越低越好)和准确率
results = model.evaluate(test_data, test_labels)

print(results)

2.7 准确率和损失随时间的可视化图像

2.7.1 可视化指标

# model.fit() 返回一个 History 对象,该对象包含一个字典,其中包括训练期间发生的所有情况。
history_dict = history.history
history_dict.keys()

2.7.2 训练集与验证集损失可视化

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

# "bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

 2.7.3 训练集与验证集准确率可视化

plt.clf()   # clear figure
acc_values = history_dict['acc']
val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()

3、召回率、准确率、ROC曲线、AUC、PR曲线

3.1 召回率、准确率

3.1.1 定义

常用的评价指标:

  • TP-将正类预测为正类
  • FN-将正类预测为负类
  • FP-将负类预测位正类
  • TN-将负类预测位负类
  • 准确率(正确率)=所有预测正确的样本/总的样本  (TP+TN)/总
  • 精确率=  将正类预测为正类 / 所有预测为正类 TP/(TP+FP)
  • 召回率 = 将正类预测为正类 / 所有正真的正类 TP/(TP+FN)
  • F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值

3.1.2 举例分析

举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%

由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。

当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。

3.2 ROC曲线

       ROC曲线常用于二分类问题中的模型比较,主要表现为一种真正例率 (TPR) 和假正例率 (FPR) 的权衡。具体方法是在不同的分类阈值 (threshold) 设定下分别以TPR和FPR为纵、横轴作图。由ROC曲线的两个指标, TPR=TP/P=TP/(TP+FN),FPR=FP/N=FP(FP+TN)可以看出,当一个样本被分类器判为正例,若其本身是正例,则TPR增加;若其本身是负例,则FPR增加,因此ROC曲线可以看作是随着阈值的不断移动,所有样本中正例与负例之间的“对抗”。曲线越靠近左上角,意味着越多的正例优先于负例,模型的整体表现也就越好。

3.2.1 ROC曲线的优点

放一张混淆矩阵图可能看得更清楚一点 :

  • 兼顾正例和负例的权衡。因为TPR聚焦于正例,FPR聚焦于与负例,使其成为一个比较均衡的评估方法。

  • ROC曲线选用的两个指标,TPR=TP/P=TP/(TP+FN),FPR=FP/N=FP(FP+TN),都不依赖于具体的类别分布。

3.2.2 ROC曲线的缺点

  • ROC曲线的优点是不会随着类别分布的改变而改变,但这在某种程度上也是其缺点。因为负例N增加了很多,而曲线却没变,这等于产生了大量FP。像信息检索中如果主要关心正例的预测准确性的话,这就不可接受了。

  • 在类别不平衡的背景下,负例的数目众多致使FPR的增长不明显,导致ROC曲线呈现一个过分乐观的效果估计。ROC曲线的横轴采用FPR,根据FPR =FP/N=FP/(FP+TN),当负例N的数量远超正例P时,FP的大幅增长只能换来FPR的微小改变。结果是虽然大量负例被错判成正例,在ROC曲线上却无法直观地看出来。(当然也可以只分析ROC曲线左边一小段)。举个例子,假设一个数据集有正例20,负例10000,开始时有20个负例被错判,FPR=2020+9980=0.002FPR=2020+9980=0.002,接着又有20个负例错判,FPR2=4040+9960=0.004FPR2=4040+9960=0.004,在ROC曲线上这个变化是很细微的。而与此同时Precision则从原来的0.5下降到了0.33,在PR曲线上将会是一个大幅下降。

3.3 AUC(Area Under the Curve)

       先看一下ROC曲线中的随机线,图中[0,0]到[1,1]的虚线即为随机线,该线上所有的点都表示该阈值下TPR=FPR,根据定义,TPR=TP/P,表示所有正例中被预测为正例的概率;FPR=FP/N,表示所有负例中被被预测为正例的概率。若二者相等,意味着无论一个样本本身是正例还是负例,分类器预测其为正例的概率是一样的,这等同于随机猜测(注意这里的“随机”不是像抛硬币那样50%正面50%反面的那种随机)。

       上图中B点就是一个随机点,无论是样本数量和类别如何变化,始终将75%的样本分为正例。

       ROC曲线围成的面积 (即AUC)可以解读为:从所有正例中随机选取一个样本A,再从所有负例中随机选取一个样本B,分类器将A判为正例的概率比将B判为正例的概率大的可能性。可以看到位于随机线上方的点(如图中的A点)被认为好于随机猜测。在这样的点上TPR总大于FPR,意为正例被判为正例的概率大于负例被判为正例的概率。

       从另一个角度看,由于画ROC曲线时都是先将所有样本按分类器的预测概率排序,所以AUC反映的是分类器对样本的排序能力,依照上面的例子就是A排在B前面的概率。AUC越大,自然排序能力越好,即分类器将越多的正例排在负例之前。

3.4 PR(Precision Recall)曲线

       PR曲线展示的是Precision vs Recall的曲线,PR曲线与ROC曲线的相同点是都采用了TPR (Recall),都可以用AUC来衡量分类器的效果。不同点是ROC曲线使用了FPR,而PR曲线使用了Precision,因此PR曲线的两个指标都聚焦于正例。类别不平衡问题中由于主要关心正例,所以在此情况下PR曲线被广泛认为优于ROC曲线。

       PR曲线的绘制与ROC曲线类似,PR曲线的AUC面积计算公式为:

                                                                                      

3.5 使用场景

  1. ROC曲线由于兼顾正例与负例,所以适用于评估分类器的整体性能,相比而言PR曲线完全聚焦于正例。

  2. 如果有多份数据且存在不同的类别分布,比如信用卡欺诈问题中每个月正例和负例的比例可能都不相同,这时候如果只想单纯地比较分类器的性能且剔除类别分布改变的影响,则ROC曲线比较适合,因为类别分布改变可能使得PR曲线发生变化时好时坏,这种时候难以进行模型比较;反之,如果想测试不同类别分布下对分类器的性能的影响,则PR曲线比较适合。

  3. 如果想要评估在相同的类别分布下正例的预测情况,则宜选PR曲线。

  4. 类别不平衡问题中,ROC曲线通常会给出一个乐观的效果估计,所以大部分时候还是PR曲线更好。

  5. 最后可以根据具体的应用,在曲线上找到最优的点,得到相对应的precision,recall,f1 score等指标,去调整模型的阈值,从而得到一个符合具体应用的模型。

4、参考

CNN字符级中文文本分类(tensorflow)https://blog.csdn.net/u011439796/article/details/77692621

CNN字符级中文文本分类(tensorflow)https://github.com/gaussic/text-classification-cnn-rnn

tensorflow中文官方教程-影评文本分类https://tensorflow.google.cn/tutorials/keras/basic_text_classification

机器学习之类别不平衡问题 (2) —— ROC和PR曲线 https://www.cnblogs.com/massquantity/p/8592091.html

准确率(Precision)、精确率、召回率(Recall)、F值https://blog.csdn.net/u011630575/article/details/80250177

 

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值