Gain Scheduled Controlling 应用于 Loop Heat Pipe 的系统设计

本文介绍了Loop Heat Pipe(LHP)在卫星精密温度控制中的应用,重点阐述了LHP的工作原理、数学建模和Gain Scheduled Controlling(增益控制)的步骤。通过选择状态量、系统识别、控制器设计和优化模拟过程,实现了模型的快速收敛和精确温度控制。
摘要由CSDN通过智能技术生成

写在前面

硕士期间也在研究所做HiWi(研究助理),
做的是卫星的信号发射器的 精密温度控制,
用的所谓Loop Heat Pipe。

一言以蔽之:
太空中 因为失重,
要求工质液氮 通过毛细虹吸力 完成循环传热、
并最终 实现极限工况下 1k上下的控制精度。

因而相较于 传统的热管,
这里的 热力学模型 和FDM手段
都要做很大的调整。

虽说 我要研究的部分
只是Loop Heat Pipe当中的
数学建模、Simulation 和 Gain Scheduled Controlling
但以我的无学,
没有找到太多文献 细细说这块儿。

这几周在完成GS Controlling当中 自己走了不少弯路,
终于 在看了几篇导师手下的本硕毕业论文后、
在托马斯极其耐心的帮助下,
完成整个开发流程的闭环。

有感于自己查找文献和寻找解决思路时的
茫然无措、颇费周折,
我想把 我解决这个问题 所用的流程方法
简单的介绍一下,
希望能帮助到后来的人。

Loop Heat Pipe(环路热管)

什么是LHP呢,维基百科 1的解释是

A loop heat pipe (LHP) is a two-phase heat transfer device that uses capillary action to remove heat from a source and passively move it to a condenser or radiator. LHPs are similar to heat pipes but have the advantage of being able to provide reliable operation over long distance and the ability to operate against gravity.

意思其实就是利用毛细现象进行工质传输的设备,工质(液氮等)随着虹吸力推动而流动,热量也被传输并以此来控制温度。之所以利用毛细现象和虹吸力也是因应失重环境下的特殊挑战。

LHP 实物图

原理

如下图2所见,通过控制蒸发器的受热蒸发,部分液体工质会转换为气体进入冷凝器重新冷凝并释放热量从而完成对环境温度的相应调节。这个过程中,受控量为蒸发器的受热 Q ˙ c c \dot{Q}_{cc} Q˙cc干扰量则是冷凝器部分的温度 T s i n k {T}_{sink} Tsink和待调控设备的热加载 Q ˙ l o a d \dot{Q}_{load} Q˙load
LHP系统原理图

建模

LHP的数学建模需要考虑到稳态和非稳态下的不同的性能,关键之处如下,详情请参见这篇论文 3,这也是我MatLab建模的出发点和研究基础。

  1. 稳态方程的解 将为暂态过程的迭代和FDM求解提供初值与边界条件;
  2. 暂态过程的迭代终止条件为质量流的变化小于设定的阈值
  3. 对冷凝器(全长1.8m左右)进行FDM建模分割为2400个小的segment对每段求解输入输出的热平衡方程组:①工质液氮的热平衡和②冷却液的热平衡

Gain Scheldualed Controlling(增益控制)

中文和英文的维基百科对此解释的较为简略,可以参见德文 4,或者这篇[link]http://www.icas.org/ICAS_ARCHIVE/ICAS2002/PAPERS/541.PDF

简单的理解则是:选定状态量来标定一系列的工作点,在这些工作点附近单独进行控制策略的选择,并在实际控制通过插值组合使用已经设置好的控制策略。

步骤

    • 选取GS Control控制量
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值