keda.#P0454. 最低通行费

题目描述

一个商人穿过一个 N×NN×N 的正方形的网格,去参加一个非常重要的商务活动。他要从网格的左上角进,右下角出。每穿越中间 11 个小方格,都要花费 11 个单位时间。商人必须在 (2N-1)(2N−1) 个单位时间穿越出去。而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入

第一行是一个整数,表示正方形的宽度 N (1≤N<100)N(1≤N<100) ;

后面 NN 行,每行 NN 个不大于 100100 的整数,为网格上每个小方格的费用。

输出

至少需要的费用。

样例

输入数据 1

5
1  4  6  8  10 
2  5  7  15 17 
6  8  9  18 20 
10 11 12 19 21 
20 23 25 29 33

输出数据 1

109

提示

样例中,最小值为 109=1+2+5+7+9+12+19+21+33109=1+2+5+7+9+12+19+21+33 。

那就直接上代码叭

#include<bits/stdc++./h>
using namespace std;
const int N = 110;
int f[N][N];
int w[N][N];
int n;
int main()
{
    //输入
    scanf("%d", &n);
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= n; j++)
        scanf("%d", &w[i][j]);
    //因为要求最小值,先把所有的方格都初始化为一个特别大的数0x3f3f3f3f
    memset(f, 0x3f, sizeof f);
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
        {
            //因为从左上角(1,1)开始走,所以直接把费用w[1][1]赋值给f[1][1];
            if(i == 1 && j == 1)
                f[i][j] = w[i][j];
            else
            {
                //计算当前位置的最小费用
                f[i][j] = min(f[i][j], f[i - 1][j]+ w[i][j]) ;
                f[i][j] = min(f[i][j], f[i][j - 1]+ w[i][j]) ;
            }
        }
        
    printf("%d\n", f[n][n]);
    
    return 0;
}keda.#P0454. 最低通行费
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值