题目描述
一个商人穿过一个 N×NN×N 的正方形的网格,去参加一个非常重要的商务活动。他要从网格的左上角进,右下角出。每穿越中间 11 个小方格,都要花费 11 个单位时间。商人必须在 (2N-1)(2N−1) 个单位时间穿越出去。而在经过中间的每个小方格时,都需要缴纳一定的费用。
这个商人期望在规定时间内用最少费用穿越出去。请问至少需要多少费用?
注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。
输入
第一行是一个整数,表示正方形的宽度 N (1≤N<100)N(1≤N<100) ;
后面 NN 行,每行 NN 个不大于 100100 的整数,为网格上每个小方格的费用。
输出
至少需要的费用。
样例
输入数据 1
5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
输出数据 1
109
提示
样例中,最小值为 109=1+2+5+7+9+12+19+21+33109=1+2+5+7+9+12+19+21+33 。
那就直接上代码叭
#include<bits/stdc++./h>
using namespace std;
const int N = 110;
int f[N][N];
int w[N][N];
int n;
int main()
{
//输入
scanf("%d", &n);
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j++)
scanf("%d", &w[i][j]);
//因为要求最小值,先把所有的方格都初始化为一个特别大的数0x3f3f3f3f
memset(f, 0x3f, sizeof f);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
//因为从左上角(1,1)开始走,所以直接把费用w[1][1]赋值给f[1][1];
if(i == 1 && j == 1)
f[i][j] = w[i][j];
else
{
//计算当前位置的最小费用
f[i][j] = min(f[i][j], f[i - 1][j]+ w[i][j]) ;
f[i][j] = min(f[i][j], f[i][j - 1]+ w[i][j]) ;
}
}
printf("%d\n", f[n][n]);
return 0;
}keda.#P0454. 最低通行费