支持向量机SVM 支持向量网络
可以做有监督学习、无监督学习、半监督学习
监督学习:线性二分类与多分类、非线性二分类与多分类、普通连续性变量的回归、概率型连续变量的回归
支持向量机 深度学习之外机器学习的天花板存在
SVM可以用来做图像分类和图像分割系统
使用支持向量机来识别用于模型预测的各种特征
支持向量机的分类方法,是在这组分布中找出一个超平面作为决策边界,使模型在数据上的分类误差接近于小,尤其是在未知数据集上的分类误差尽量小。
超平面:是一个空间的子空间,它是维度比所在空间小一维的空间,如果数据空间本身是三维的,则其超平面是二维平面,而如果数据空间本身是二维的,则超平面是一维的直线。
二分类问题中超平面是决策边界
决策边界margin 超平面往两边移动直到碰到最近的样本点为止
支持向量机就是通过找出边际最大的决策边界来对数据进行分类的分类器
支持向量机的理解:
sklearn中的svm
libsvm库 直接使用
sklearn.svm.SVC
为了推导和计算能简便规定决策边界以上的点标签都为正;决策边界以下的点标签都为负。
两类数据中距离决策边界最近的点被称为支持向量
参数向量不可以是零向量