机器学习sklearn-支持向量机

本文深入探讨支持向量机SVM,它不仅可用于有监督学习的线性和非线性分类,还能应用于回归问题。SVM通过找到最大化边际的决策边界进行分类,其中支持向量起关键作用。在sklearn中,SVM的实现涉及多种核函数,如线性、多项式、sigmoid和rbf,选择合适的核函数对模型性能至关重要。此外,软间隔和C参数的调整平衡了分类准确性和边际大小。
摘要由CSDN通过智能技术生成

支持向量机SVM 支持向量网络

可以做有监督学习、无监督学习、半监督学习

监督学习:线性二分类与多分类、非线性二分类与多分类、普通连续性变量的回归、概率型连续变量的回归

支持向量机 深度学习之外机器学习的天花板存在

SVM可以用来做图像分类和图像分割系统

使用支持向量机来识别用于模型预测的各种特征

支持向量机的分类方法,是在这组分布中找出一个超平面作为决策边界,使模型在数据上的分类误差接近于小,尤其是在未知数据集上的分类误差尽量小。

超平面:是一个空间的子空间,它是维度比所在空间小一维的空间,如果数据空间本身是三维的,则其超平面是二维平面,而如果数据空间本身是二维的,则超平面是一维的直线。

二分类问题中超平面是决策边界

决策边界margin 超平面往两边移动直到碰到最近的样本点为止

支持向量机就是通过找出边际最大的决策边界来对数据进行分类的分类器

支持向量机的理解:

sklearn中的svm

 libsvm库 直接使用

sklearn.svm.SVC

 为了推导和计算能简便规定决策边界以上的点标签都为正;决策边界以下的点标签都为负。

两类数据中距离决策边界最近的点被称为支持向量

参数向量不可以是零向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值