Pytorch RNN

word embedding  sequence representation

RNN 

 

权值共享 weight sharing 

用梯度下降更新权值

RNN layer的使用 

nn.RNN(input_size,hidden_size,num_layers)

out, ht = forward(x, h0)

nn.RNNCell   更加灵活,手动喂多次

梯度弥散梯度爆炸

梯度爆炸 p.graf.norm() 查看梯度的模 

解决方法gradient clipping:  torch.nn.utils.clip_grad_norm_ () 

梯度弥散   LSTM解决 grandient visualization 

LSTM 能够增加记忆长度

 forget gate / input gate /output gate

 求偏导的时候计算梯度是四项累加而不是累乘,梯度弥散/爆炸的可能性很小

nn.LSTM 

nn.LSTMCell

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值