【方法】树莓派小车自动循迹(摄像头)

Github上有更多代码,按需自取

文章目录


今天我们来介绍一下树莓派小车的循迹教程
首先看一个效果视频
在这里插入图片描述

说明

该小车的硬件是:树莓派+L298N,其实用Arduino也是一样的,下位机只提供一个车轮的控制,视觉识别都是通过树莓派完成的

视觉利用Opencv来实现,关于如何安装Opencv以及使用摄像头请参看我另一篇博客

算法逻辑:看到这样一个赛道,赛道是白色的,其余部分是我们都看成非白色,这样很自然而然地就想到了二值化,将赛道的白色单独显示出来,通过一个二值化就能够很好的区分开赛道与背景。(二值化参考博客
我们不需要分析整个摄像头范围,其实只需要选取图像中的一行像素,类似于一个线阵摄像头,中间部分是白色的,左右是黑色,所以只需要找到白色部分的中点,然后让小车一直朝着这个中点矫正就好了,如果偏左了,就让左轮加快速度,另一边同理。重点是过弯的时候,需要仔细调整这个速度,否则容易转不过去。

主要是GPIO口的一些操控,可以看我的另一篇博客

注意

尽量自己学会调试,查找问题,我的代码不是万能的,但你是万能的

一、腐蚀膨胀问题,原理我不在这里多解释了,自己选择是否腐蚀膨胀/先后顺序/迭代次数,会满足你不同的使用场景

二、转弯速度问题
30 + direction …
这些速度参数设置自己调节,甚至都可以采用缩放倍率

三、检查摄像头拍的图片
有发现拍出来的图最右边多了一列全白,解决办法有俩:1、先腐蚀,把白色去掉。2、别膨胀,把最后一列去掉,怎么去掉呢?white_index[0][white_count - 1] 把这个1改为2,相当于不去考虑最后一列

代码

# coding:utf-8

# 加入摄像头模块,让小车实现自动循迹行驶
# 思路为:摄像头读取图像,进行二值化,将白色的赛道凸显出来
# 选择下方的一行像素,黑色为0,白色为255
# 找到白色值的中点
# 目标中点与标准中点(320)进行比较得出偏移量
# 根据偏移量来控制小车左右轮的转速
# 考虑了偏移过多失控->停止;偏移量在一定范围内->高速直行(这样会速度不稳定,已删)

import RPi.GPIO as gpio
import time
import cv2
import numpy as np

# 定义引脚
pin1 = 12
pin2 = 16
pin3 = 18
pin4 = 22

# 设置GPIO口为BOARD编号规范
gpio.setmode(gpio.BOARD)

# 设置GPIO口为输出
gpio.setup(pin1, gpio.OUT)
gpio.setup(pin2, gpio.OUT)
gpio.setup(pin3, gpio.OUT)
gpio.setup(pin4, gpio.OUT)

# 设置PWM波,频率为500Hz
pwm1 = gpio.PWM(pin1, 500)
pwm2 = gpio.PWM(pin2, 500)
pwm3 = gpio.PWM(pin3, 500)
pwm4 = gpio.PWM(pin4, 500)

# pwm波控制初始化
pwm1.start(0)
pwm2.start(0)
pwm3.start(0)
pwm4.start(0)

# center定义
center = 320
# 打开摄像头,图像尺寸640*480(长*高),opencv存储值为480*640(行*列)
cap = cv2.VideoCapture(0)
while (1):
    ret, frame = cap.read()
    # 转化为灰度图
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 大津法二值化
    retval, dst = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
    # 膨胀,白区域变大
    dst = cv2.dilate(dst, None, iterations=2)
    # # 腐蚀,白区域变小
    # dst = cv2.erode(dst, None, iterations=6)

    # 单看第400行的像素值
    color = dst[400]
    # 找到白色的像素点个数
    white_count = np.sum(color == 255)
    # 找到白色的像素点索引
    white_index = np.where(color == 255)

    # 防止white_count=0的报错
    if white_count == 0:
        white_count = 1

    # 找到白色像素的中心点位置
    center = (white_index[0][white_count - 1] + white_index[0][0]) / 2

    # 计算出center与标准中心点的偏移量
    direction = center - 320

    print(direction)

    # 停止
    if abs(direction) > 250:
        pwm1.ChangeDutyCycle(0)
        pwm2.ChangeDutyCycle(0)
        pwm3.ChangeDutyCycle(0)
        pwm4.ChangeDutyCycle(0)

    # 右转
    elif direction >= 0:
        # 限制在70以内
        if direction > 70:
            direction = 70
        pwm1.ChangeDutyCycle(30 + direction)
        pwm2.ChangeDutyCycle(0)
        pwm3.ChangeDutyCycle(30)
        pwm4.ChangeDutyCycle(0)

    # 左转
    elif direction < 0:
        if direction < -70:
            direction = -70
        pwm1.ChangeDutyCycle(30)
        pwm2.ChangeDutyCycle(0)
        pwm3.ChangeDutyCycle(30 - direction)
        pwm4.ChangeDutyCycle(0)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放清理
cap.release()
cv2.destroyAllWindows()
pwm1.stop()
pwm2.stop()
pwm3.stop()
pwm4.stop()
gpio.cleanup()

要使用OpenCV控制树莓派摄像头进行红线循迹,您可以遵循以下步骤: 1. 初始化摄像头:与前面所述相同,使用`cv2.VideoCapture()`函数初始化树莓派摄像头对象。 ```python import cv2 cap = cv2.VideoCapture(0) ``` 2. 循迹红线:使用图像处理技术来识别红线。您可以使用HSV色彩空间将图像转换为HSV格式,并根据红色的HSV范围过滤图像。 ```python # 读取摄像头帧 ret, frame = cap.read() # 将图像转换为HSV色彩空间 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 定义红色范围 lower_red = np.array([0, 100, 100]) upper_red = np.array([10, 255, 255]) # 根据红色范围进行过滤 mask = cv2.inRange(hsv, lower_red, upper_red) ``` 3. 提取红线轮廓:使用`cv2.findContours()`函数找到红线的轮廓。 ```python # 找到红线轮廓 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) ``` 4. 过滤轮廓:根据轮廓的面积和形状进行过滤,以确保仅保留红线的轮廓。 ```python # 过滤轮廓 for contour in contours: area = cv2.contourArea(contour) if area > min_area: # 设置最小面积阈值来过滤掉噪声 # 进一步处理和绘制红线轮廓 ... ``` 5. 绘制红线轮廓:使用`cv2.drawContours()`函数将红线轮廓绘制在原始图像上。 ```python # 绘制红线轮廓 cv2.drawContours(frame, contours, -1, (0, 0, 255), 2) ``` 6. 显示结果:使用`cv2.imshow()`函数显示处理后的图像,并使用`cv2.waitKey()`函数等待用户按下某个键来退出程序。 ```python # 显示结果图像 cv2.imshow('Frame', frame) # 检测按键 key = cv2.waitKey(1) & 0xFF if key == ord('q'): # 按下 'q' 键退出循环 break ``` 这只是一个基本的框架,具体的实现取决于您的具体需求和图像处理算法。您可以根据需要进行调整和优化。同时,您还可以参考OpenCV官方文档和示例代码来获得更多详细信息。祝您成功实现红线循迹功能!
评论 131
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yzy_1996

买杯咖啡,再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值