让机器用人的方式识别图像[codes]

本文探讨了一种用于可解释图像识别的深度学习方法,重点关注原型层的前向和反向传播过程。原型层公式通过最大化输入与权重之间的距离来实现,其在前向传播中计算每个输出通道的损失,而在反向传播中更新权重和输入梯度。此外,还介绍了模板生成损失R2R2和投影策略,用于优化原型权重并确保与训练集中的真实样本保持接近。
摘要由CSDN通过智能技术生成

论文地址

This looks like that: deep learning for interpretable image recognition

prototype layer

prototype layer对应的公式如下:
gpj=maxz⃗ patch(z)log(||z⃗ pj||22+ϵ) g p j = max z → ∈ p a t c h ( z ) − l o g ( | | z → − p j | | 2 2 + ϵ )
其中max层可以用现成的maxpool层来实现,下面重点讨论新的层实现
fz=log(||z⃗ pj||22+ϵ) f z = − l o g ( | | z → − p j | | 2 2 + ϵ )
这个层的输入输出的通道数可以不一致,但是每个通道内的尺寸需要一致. 为了后续讨论方便,约定以下符号
* in_data: (batchSize, inChNum, height, width), 输入数据,即公式中的 z z
* weight: (outChNum, inChNum, 3, 3), filter权重, 此处假设采用3x3的filter
* out_data: (batchSize, outChNum, height, width), 输出数据,迹公式中的 f ( z )

in_data (one sample)

z00 z 00 z01 z 01 z02 z 02
z10 z 10 z11 z 11 z12 z 12
z20 z 20 z21 z 21 z22 z 22
z30 z 30 z31 z 31 z32 z 32

weight (one sample and one output channel)

w00 w 00 w01 w 01
在C#中使用Messenger Code识别功能,可以通过调用Facebook提供的Messenger Code识别API实现。 首先,需要使用HttpClient类发送HTTP请求来调用Messenger Code识别API。例如,可以使用以下代码: ```csharp using System; using System.Net.Http; using System.Threading.Tasks; namespace MessengerCodeRecognizer { class Program { static async Task Main(string[] args) { string pageAccessToken = "YOUR_PAGE_ACCESS_TOKEN"; string imageUrl = "https://www.example.com/messenger_code.jpg"; // 替换为需要识别的Messenger Code图片URL string url = $"https://graph.facebook.com/v10.0/me/messenger_codes?access_token={pageAccessToken}"; string requestBody = $"{{\"image_url\":\"{imageUrl}\"}}"; using (HttpClient httpClient = new HttpClient()) { HttpResponseMessage response = await httpClient.PostAsync(url, new StringContent(requestBody)); if (response.IsSuccessStatusCode) { string responseString = await response.Content.ReadAsStringAsync(); Console.WriteLine(responseString); // 返回的是解析后的Messenger Code数据 } else { Console.WriteLine("Failed to recognize the Messenger Code."); } } } } } ``` 在上面的代码中,将YOUR_PAGE_ACCESS_TOKEN替换为你的Page Access Token,将imageUrl替换为你需要识别的Messenger Code图片的URL。运行程序后,将会返回解析后的Messenger Code数据。 请注意,Messenger Code识别API目前仅支持解析包含ref参数的Messenger Code。如果需要识别其他类型的Messenger Code,可以使用第三方的二维码识别库,例如Zxing。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值