softmax_loss梯度推导

本文详细介绍了softmax cross entropy loss,也就是softmax_loss的数学定义,并且探讨了其梯度计算过程。针对单个样本的loss,导数分为对应目标类别的负一倍和其他类别的softmax值。在实际应用中,例如线性分类器,通过链式法则可以计算loss对权重矩阵W的导数。对于批量样本,只需对每个样本的贡献取平均即可得到整个batch的梯度。
摘要由CSDN通过智能技术生成

softmax_loss的真正名字应该是softmax cross entropy loss。因为softmax的定义是
f ( z i ) = s o f t m a x ( z i ) = e z i ∑ j e z j f(z_i)=softmax(z_i)=\frac{e^{z_i}}{\sum_je^{z_j}} f(zi)=softmax(zi)=jezjezi, softmax loss的定义是
L = − 1 N ∑ i = 0 N L i = − 1 N ∑ i = 0 N l o g f ( z i ) L=-\frac{1}{N}\sum_{i=0}^NL_i=-\frac{1}{N}\sum_{i=0}^{N}logf(z_i) L=N1i=0NLi=N1i=0N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值