HDU1081-最大子矩阵和

To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14664    Accepted Submission(s): 6865


Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.
 

Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 

Output
Output the sum of the maximal sub-rectangle.
 

Sample Input
 
 
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
 

Sample Output
 
 
15

题意:输入n,然后输入n*n的矩阵,输出矩阵中的子矩阵值最大的

思路:可以用最大子数组和变相来做

因为我们可以算出一维数组的连续最大子数组,所以我们可以把二维数组压缩成一位数组

例如数据中的

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

我们可以用一个一维数组来储存第i行到第j行的值,然后用算一维数组的算法来做

这样算出来的最大值就是  第i行到第j行,第1列到第n列中的最大值

坑点:我去看了一下hdu的讨论区,说是多组输入,而且输入0的时候结束,题目中没给

AC代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=110;
int dp[maxn],num[maxn][maxn],ans[maxn];
int main()
{
    int n,i,j,k,p;
    while (cin>>n&&n)
        {
            memset(num,0,sizeof(num));
            for (i=1;i<=n;i++)
                for (j=1;j<=n;j++)
                    {
                        cin>>p;
                        num[i][j]=num[i-1][j]+p;            //这一步是算出矩阵中每一列的和
                    }
            int Max=-999999;
            for (i=1;i<=n;i++)
                {
                    for (j=i+1;j<=n;j++)
                        {
                            memset(ans,0,sizeof(ans));
                            for (k=1;k<=n;k++)
                                ans[k]=num[j][k]-num[i][k];        //通过一个数组储存从i行到j行的和, (j-i)表示的是i到j行
                            memset(dp,0,sizeof(dp));
                            for (k=1;k<=n;k++)                //dp算法
                                {
                                    dp[k]=max(dp[k-1]+ans[k],ans[k]);
                                    Max=max(dp[k],Max);                //Max得出最大值
                                }
                        }
                }
            cout<<Max<<endl;
        }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值