To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 14664 Accepted Submission(s): 6865
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
题意:输入n,然后输入n*n的矩阵,输出矩阵中的子矩阵值最大的
思路:可以用最大子数组和变相来做
因为我们可以算出一维数组的连续最大子数组,所以我们可以把二维数组压缩成一位数组
例如数据中的
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
我们可以用一个一维数组来储存第i行到第j行的值,然后用算一维数组的算法来做
这样算出来的最大值就是 第i行到第j行,第1列到第n列中的最大值
坑点:我去看了一下hdu的讨论区,说是多组输入,而且输入0的时候结束,题目中没给
AC代码:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; const int maxn=110; int dp[maxn],num[maxn][maxn],ans[maxn]; int main() { int n,i,j,k,p; while (cin>>n&&n) { memset(num,0,sizeof(num)); for (i=1;i<=n;i++) for (j=1;j<=n;j++) { cin>>p; num[i][j]=num[i-1][j]+p; //这一步是算出矩阵中每一列的和 } int Max=-999999; for (i=1;i<=n;i++) { for (j=i+1;j<=n;j++) { memset(ans,0,sizeof(ans)); for (k=1;k<=n;k++) ans[k]=num[j][k]-num[i][k]; //通过一个数组储存从i行到j行的和, (j-i)表示的是i到j行 memset(dp,0,sizeof(dp)); for (k=1;k<=n;k++) //dp算法 { dp[k]=max(dp[k-1]+ans[k],ans[k]); Max=max(dp[k],Max); //Max得出最大值 } } } cout<<Max<<endl; } return 0; }