tensorflow 从最近一次 checkpoint 加载模型last_checkpoint

import tensorflow as tf

tf.reset_default_graph()

global_step = tf.Variable(1, name="global_step")
global_step1 = tf.Variable(1, name="global_step1")
add_0 = global_step  + global_step1

ckpt_path = r"E:\temp\global_model"
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver()
begin = global_step.eval(session=sess)
for i in range(begin, 50):
    #global_step.assign(i).eval(session=sess)
    sess.run(global_step.assign_add(i))
    print(i, " : ", sess.run(global_step), sess.run(add_0))
saver.save(sess, ckpt_path, global_step=global_step)
import tensorflow as tf

tf.reset_default_graph()

global_step = tf.Variable(1, name="global_step")
global_step1 = tf.Variable(1, name="global_step1")
add_0 = global_step  + global_step1

sess = tf.Session()
saver = tf.train.Saver()

model_file = tf.train.latest_checkpoint(r"E:\temp")
saver.restore(sess, model_file)
print(sess.run(global_step))
print(sess.run(add_0))

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值