【新手教程】Windows本地化安装、运行,部署Auto-GPT

该教程详细介绍了如何在Windows操作系统上安装和运行Auto-GPT,包括获取OpenAIAPIKey、安装Python、设置虚拟环境、安装依赖包,以及解决可能出现的问题,如无效APIkey和网络超时等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows安装、运行Auto-GPT

第一、准备条件

OpenAI Key,请登录官网获取

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

image.png

第二、环境搭建

2.1安装python(3.8以上版本)

a、下载Python安装包

Download Python | 官网选择Python版本并下载,本教程用的 Python3.10

image.png

安装python

image.png

image.png

image.png

b、验证是否安装成功?
  • 按快捷键win+R,打开运行面板,输入"cmd",然后点击"确定"
    image.png
  • 进入windows命令提示符窗口,输入命令"python --version",然后回车,出现这样的界面则表示成功安装
    image.png
  • 检查pip包管理工具是否安装成功?搭建Auto-GPT需要用pip安装所需的python包
    在cmd窗口输入指令pip --version ,出现版本号,就说明安装成功了。
    image.png

2.2安装git

a、下载git安装包

Git官网 下载Git安装包,并安装Git

b、安装git

点击安装包,一直点击Next,傻瓜式安装即可。
image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

第三、安装与运行Auto-GPT

1,克隆AutoGPT仓库到本地

git clone -b stable https://github.com/Significant-Gravitas/Auto-GPT.git

2、创建虚拟环境(可选)

为了更好的管理项目和依赖库,我这里创建一个auto gpt的虚拟环境。如果你电脑没有其他的项目,可以直接跳到第3步。

#创建虚拟环境
conda create --name auto_gpt_env python=3.10

#激活虚拟环境
conda activate auto_gpt_env

#退出虚拟环境
conda deactivate

#删除虚拟环境
conda remove --name auto_gpt_env --all

#查看虚拟环境
conda info --envs

3、安装Auto-GPT依赖包

在powershell中输入命令pip install -r requirements.txt,然后回车,安装Auto-GPT所需的Python包,如果是电脑已安装了的Python包,会显示"Requirement already satisfied",未安装的Python包,则会显示"Collecting",最后显示"Successfully installed"则说明安装所需的Python包成功了,这时候Auto-GPT所需的环境已经搭建完成了,下面就可以运行Auto-GPT了。

这一步会耗费一点时间,取决于网速。

4、修改环境变量

将根目录下的.env.template重命名为.env。打开.env,修改OPENAI_API_KEY的值,以及打开一些环境变量参数。

EXECUTE_LOCAL_COMMANDS=True
OPENAI_API_KEY=你自己的key

image.png

5、运行Auto-GPT

python -m autogpt

我让它分析一篇cdc的文章,并提炼观点

medical experts

Analysis of this article: https://www.chinacdc.cn/gwxx/202109/t20210918_248161.html

Extract the main ideas and save them in a file.

finish, close the program

第四、遇到的一些问题

a、无效key问题

问题:Incorrect API key provided" error - I think the repo has a hardcoded OpenAI Key
原因:之前电脑配置了一个OPENAI_API_KEY的环境变量,这个key已经过期。
解决办法:更新环境变量中的key值,或者删除它直接使用.env文件中的key。

b、访问openai timeout

类似的问题:Command google returned: Error: [WinError 10060]

解决办法:
image.png

image.png

c、中文回复问题

问题:如果要让AutoGPT中文回复,怎么办?

chat.py修改如下代码,测试有效。
image.png

d、openAI 接口,SSL 认证失败 443

ssl.SSLEOFError: EOF occurred in violation of protocol (_ssl.c:1131)requests.exceptions.SSLError: HTTPSConnectionPool(host='openaipublic.blob.core.windows.net', port=443): Max retries exceeded with url: /encodings/cl100k_base.tiktoken (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:1131)')))

解决方法,对urllib3 降版本,变为 1.25.11

pip install urllib3==1.25.11
<think>嗯,用户这次明确在问"本地部署大模型开发套件"的具体方案和教程,看来是要动手实践了。结合用户之前让我参考的三条引用,特别是引用[3]详细提到了MindFormers这个本地部署方案,应该作为重点推荐。用户可能是企业技术负责人或者开发工程师,从ta特意强调"开发套件"和"教程"来看,需求非常务实——需要能快速上手的工具链。有趣的是ta排除了API调用方案(引用[1]提到过),说明数据隐私或定制化需求强,也可能是为了避开API调用成本。技术上需要拆解几个层次:首先开发套件的选择(MindFormers肯定要重点推,但得补充其他选项才客观),然后是硬件门槛说明(用户最怕部署时才发现显卡不够),最后是教程路径设计。特别要注意引用[2]提到的成本问题,所以方案必须包含轻量化部署选项。补充HuggingFaceTransformers作为备选很必要,毕竟生态更成熟。不过用户既然搜索过中文资料,可能团队技术栈更倾向国内方案,所以把Deepspeed这类英文文档资源放在后期拓展部分比较合适。最后教程部分做了学习分级是考虑到:如果是新手看到MindSpore脚本容易懵,得从Python环境配置开始;但老手可能直接要微调示例,所以用docker方案节约时间。那个剪枝量化技巧放在第三阶段很合适,避免初学者过早优化。</think> 针对本地部署大模型的开发套件方案,以下是结合行业实践的分步指南和技术方案,重点参考了引用[3]的MindFormers和其他主流工具: --- ### **一、核心开发套件方案** #### 1. **MindFormers(国产化方案)** - **定位**:一站式大模型全流程开发套件(训练/微调/部署- **核心能力**: ✅ 支持昇腾/英伟达显卡异构计算 ✅ 内置LLaMA、GLM、GPT等主流模型架构 ✅ 提供轻量化部署工具链(MindSpore Lite推理引擎) - **教程路径**: 1️⃣ 安装环境(Python≥3.8): ```bash pip install mindspore==2.3.0 mindformers==0.9.0 # GPU版本需指定cuda版本 ``` 2️⃣ 使用预训练模型推理(示例): ```python from mindformers import AutoModel model = AutoModel.from_pretrained("gpt2") output = model.generate("人工智能的未来是") ``` 3️⃣ 模型微调实战: - 参考[官方文档-微调案例](https://www.mindspore.cn/mindformers/docs/zh-CN/r0.9.0) - 关键参数:`batch_size=8`, `learning_rate=5e-5`, `epochs=3` #### 2. **Hugging Face Transformers + PyTorch(国际主流)** - **优势**:生态完善,支持超200个预训练模型 - **部署流程**: ```python # 安装依赖 pip install transformers torch accelerate # 本地加载模型 from transformers import pipeline generator = pipeline('text-generation', model='local/path/to/llama-7b') # 需提前下载模型权重 ``` - **轻量化部署工具**: - ONNX Runtime:导出模型为ONNX格式加速推理 - TensorRT:针对NVIDIA显卡的优化引擎 --- ### **二、关键技术要点** 1. **硬件要求**: - 基础测试:NVIDIA RTX 3090(24GB显存)可运行7B参数模型 - 生产部署:建议A100/A800显卡集群 + 分布式推理框架(如Ray Serve) 2. **模型压缩技术**: - **量化**:FP16精度下显存占用降低50%(MindSpore AMP模块) - **剪枝**:移除冗余神经元(参考论文《The Lottery Ticket Hypothesis》) 3. **安全部署实践**: - 容器化封装:Docker + Kubernetes管理模型服务 - API网关:通过FastAPI封装RESTful接口 --- ### **三、学习资源推荐** 1. **官方教程**: - [MindFormers GitHub](https://github.com/mindspore-lab/mindformers)(含中文文档) - [Hugging Face模型中心](https://huggingface.co/models)(搜索local deployment标签) 2. **实战案例**: - 企业知识库问答:使用LangChain + LLaMA构建本地RAG系统 - 工业质检:微调ViT模型实现缺陷检测 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值