透彻理解大模型框架:Transformer模型原理详解与机器翻译

        **注意力,自注意力,transformer研究变迁**

1、模型结构

2、模型encoding过程

2.1)注意力机制

input=x={x1,x2}

输入句子:{thiking machine}

embeding:x1,x2

Thinking x1 = { }; Machine x2 = { }

已知神经网络权重:W_q, W_k, W_v

W_q, W_k, W_v

    **W\_q\*x1 = q1 = \[  3,1,50\],           W\_q\*x2 = q2 = \[2,4,8\]**

     **W\_k\*x1 = k1 = \[ 4,50,1\],           W\_k\*x2 = k2 = \[3,37,1\]**

     **W\_v\*x1 = v1 = \[ 3,1,4\],           W\_v\*x2 = v2 =   \[2,6,8\]**

下面计算注意力矩阵,与Z

得到注意力矩阵:

注意力矩阵QK/\sqrt{d}

softmax(QK/\sqrt{d})=

\left [ \begin{pmatrix} 0.88 , 0.12 & & \ 0.99,0.01 \end{pmatrix} \right ]

Z=softmax(QK’/\sqrt{d})*V

=\left [ \begin{pmatrix} 0.88 , 0.12 & & \ 0.99,0.01 \end{pmatrix} \right ]\begin{pmatrix} 3,1,4 & & \ 2,6,8& & \end{pmatrix}=\begin{pmatrix} 0.88*3+0.12*2,0.88*1+0.12*6,0.88*4+0.12*8 & & \ 0.99*3+0.01*2,0.99*1+0.01*6,0.99*4+0.01*8& & \end{pmatrix}

注释:1、经过注意力矩阵与v相乘后,得到Z, Z已经不在是两个单词的向量了。但是至少一点是肯定的,Z的信息已经融合了两个单词各个分量以及权重的信息。

       **2、注意力矩阵的维度,是输入句子长度未n,单词维度为d,即n\*d,  也就是输入句子的矩阵的维度(X)n\*d,由此可知  注意力矩阵:n\*n维数。**

      **3、经过encoding后,Z的大小,也是n\*n\*n\*d=n\*d维数,也就是输入(输出)句子的维数。**

      **4、softmax概率分类器,是针对注意力矩阵按行进行概率归一化。**

类似的道理,接入多头注意力机制

2.2)位置嵌入

  将每个位置编号,然后每个编号对应一个向量,通过将位置向量和词向量**相加**,就给每个词都引入了一定的位置信息,这样 attention 就可以分辨出不同位置的词了。

  The positional encodings have the same dimension dmodel as the embeddings, so that the two can be summed.

   不妨假设序列长度为6(6个单词),维数为8(每个 单词维数),  X为6\*8的向量,n=6, d=8;   2i = 0,2,4,6,8;    2i+1 = 1,3,5,7;

    取绝对位置为:pos=\[0, 1,2,3,4,5,   6,   7\],其中 i=0, 1,2,3,4;dmodel=8;  

得到下面奇数,偶数位置的嵌入向量:

PositionEmbeding=

PE =[sin(\frac{0}{10000^{\frac{0}{8}}}), sin(\frac{2}{10000^{\frac{2}{8}}}), ,sin(\frac{4}{10000^{\frac{4}{8}}}), sin(\frac{6}{10000^{\frac{6}{8}}}), sin(\frac{8}{10000^{\frac{8}{8}}})] \ PE =[cos(\frac{1}{10000^{\frac{0}{8}}}), cos(\frac{3}{10000^{\frac{2}{8}}}), cos(\frac{5}{10000^{\frac{4}{8}}}), cos(\frac{7}{10000^{\frac{6}{8}}})]

合并上面式子,得到位置嵌入向量:

PE =[sin(\frac{0}{10000^{\frac{0}{8}}}), cos(\frac{1}{10000{\frac{0}{8}}}),sin(\frac{2}{10000{\frac{2}{8}}}), cos(\frac{3}{10000^{\frac{2}{8}}}), sin(\frac{4}{10000^{\frac{4}{8}}}), cos(\frac{5}{10000^{\frac{4}{8}}}) ,\ sin(\frac{6}{10000^{\frac{6}{8}}}) , cos(\frac{7}{10000^{\frac{6}{8}}})]

因为用正弦波,所以取值为波长0到2pi的整数倍之间。

X的每一个token的词的向量为一个8维数序列,加上位置向量,就完成向量的嵌入。

 下面举例:给出句子10个词,每个词用64维向量表示,此时靠近单词位置越近编码效果越明显。前20维的频率变化越明显,数据位置编码效果越明显。

cos,sin位置编码,只考虑了句子间词与词的空间位置,不考虑词的先后顺序。比如课堂举的例子:谁是谢霆锋的儿子?谢霆锋是谁的儿子?这两句话的语义完全不同,采用正弦余弦的位置编码,会截然不同。正因为不考虑词出现的先后顺序导致的弊端,所有有研究改进这一缺陷。

2.3)生成注意力机制后,作残差相加,FFN两个过程

2.4) encoder-decoder执行动图

                                                         **encoder-decoder 框架**

3、transformer 注意力机制

4、 句子补全掩码和注意机制掩码

Padding Mask(句子补丁掩码):
   假如是每个batch的句子不等长的情况, 那么我们需要加padding, 使得每个句子的长度变一致. 但是必须保证加的padding不会影响其他句子, 那么这就可以在padding区域加一个mask, 具体来说也就是给无效的区域加个负偏置, 因为softmax是e的对数, 假如是接近负无穷的话相应的注意力部分就接近于0  

Masked Self-Attention(自注意力掩码):

之后再做 softmax,就能将 - inf 变为 0,得到的这个矩阵即为每个字之间的权重

掩码图示:(非常直观)每次只能看到V的各行的单词的当前位置单词和之前的位置的单词,当前单词的后续单词根本看不到。

Decoder中第二个 Multi-Head Attention:
其实也叫cross-attention,融合encoder中的输出矩阵Q,K,V,Z。
  • Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 Z计算的。
  • 根据 Encoder 的输出 Z计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。
  • 这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词信息 (这些信息无需 Mask)。

5、样本数据层正态分布规范化Layer Normalization

batch_norm和layer_norm的区别:

    **BN针对批次内的所有样本作数据正态分布标准化。而 LN正对批次内各个样本做数据正态分布规范,如下图清晰显示。前者是全局数据上的规范,容易导致数据抖动。后者样本内作规范,规范后数据误差明显更小。**

三维数据的演示如下图:

6、transformer 整个流程计算公式

7、阅读后重要疑惑解答:

疑问1:输出的z到哪里去了?

   **编码层输出z,z到哪里去了呢?相信所有学transformers的学者,都有这样一个疑惑。当然z传到decoder层去了。下面看精彩讲解:**

   **编码器最后一层的输出 z 要经过线性变换生成键 k 和 值v,然后送到解码器的交叉注意力子层。**

  **编码器的输出 z 传递到解码器:  

在解码器的forward函数中,编码器的输出 z 被传递给解码器层的memory参数:
m = memory # memory is the output from the encoder
在交叉注意力子层中使用 z 作为键和值:(就是在调用self.src_attn时,m被用作键和值)
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
在MultiHeadedAttention的forward方法中进行线性变换:
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
在这里,key 和 value 是通过对传入的memory(即 z)进行线性变换生成的。
其中 self.linears 包含四个线性层,其中两个用于生成 key 和 value。**

疑问2:注意力分数与V向量加权 ,得到的新的token向量。(也就是大模型从已知token生成新的token,到底是什么样子呢?)

生成的序列中,of生成的样子是这样。看到这里你是不是很震撼!!!!。大家多多点赞,付出很多心血!!!

**提示:**为了更好的理解以上内容,是如何编码的,为了360度弄明白transformer的代码是如何巧妙实现的,可以参考一本好书 :邵浩,邵一峰《预训练语言模型》,电子工业出版社,2021.5。

8、transformer实践

1)基于transformer的情感分析实践

见20级电子信息短学期课程(aistuidio)

2)基于transformer的机器翻译

环境要求如上述requirements

简介
本文使用PyTorch自带的transformer层进行机器翻译:从德语翻译为英语。从零开始实现Transformer请参阅PyTorch从零开始实现Transformer,以便于获得对Transfomer更深的理解。

数据集
Multi30k

环境要求
使用torch, torchtext,spacy,其中spacy用来分词。另外,spacy要求在虚拟环境中下载语言模型,以便于进行tokenize(分词)

# To install spacy languages do:
python -m spacy download en_core_web_sm
python -m spacy download de_core_news_sm

实验代码

代码来源请参考下方的GitHub链接

transformer_translation.py文件

# Bleu score 32.02
import torch
import torch.nn as nn
import torch.optim as optim
import spacy
from utils import translate_sentence, bleu, save_checkpoint, load_checkpoint
from torch.utils.tensorboard import SummaryWriter
from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator

"""
To install spacy languages do:
python -m spacy download en_core_web_sm
python -m spacy download de_core_news_sm
"""
spacy_ger = spacy.load("de_core_news_sm")
spacy_eng = spacy.load("en_core_web_sm")


def tokenize_ger(text):
    return [tok.text for tok in spacy_ger.tokenizer(text)]

# 将英语进行分词
def tokenize_eng(text):
    return [tok.text for tok in spacy_eng.tokenizer(text)]


german = Field(tokenize=tokenize_ger, lower=True, init_token="<sos>", eos_token="<eos>")

english = Field(
    tokenize=tokenize_eng, lower=True, init_token="<sos>", eos_token="<eos>"
)

train_data, valid_data, test_data = Multi30k.splits(
    exts=(".de", ".en"), fields=(german, english)
)

german.build_vocab(train_data, max_size=10000, min_freq=2)
english.build_vocab(train_data, max_size=10000, min_freq=2)


class Transformer(nn.Module):
    def __init__(
        self,
        embedding_size,
        src_vocab_size,
        trg_vocab_size,
        src_pad_idx,
        num_heads,
        num_encoder_layers,
        num_decoder_layers,
        forward_expansion,
        dropout,
        max_len,
        device,
    ):
        super(Transformer, self).__init__()
        self.src_word_embedding = nn.Embedding(src_vocab_size, embedding_size)
        self.src_position_embedding = nn.Embedding(max_len, embedding_size)
        self.trg_word_embedding = nn.Embedding(trg_vocab_size, embedding_size)
        self.trg_position_embedding = nn.Embedding(max_len, embedding_size)

        self.device = device
        self.transformer = nn.Transformer(
            embedding_size,
            num_heads,
            num_encoder_layers,
            num_decoder_layers,
            forward_expansion,
            dropout,
        )
        self.fc_out = nn.Linear(embedding_size, trg_vocab_size)
        self.dropout = nn.Dropout(dropout)
        self.src_pad_idx = src_pad_idx

    def make_src_mask(self, src):
        src_mask = src.transpose(0, 1) == self.src_pad_idx

        # (N, src_len)
        return src_mask.to(self.device)

    def forward(self, src, trg):
        src_seq_length, N = src.shape
        trg_seq_length, N = trg.shape

        src_positions = (
            torch.arange(0, src_seq_length)
            .unsqueeze(1)
            .expand(src_seq_length, N)
            .to(self.device)
        )

        trg_positions = (
            torch.arange(0, trg_seq_length)
            .unsqueeze(1)
            .expand(trg_seq_length, N)
            .to(self.device)
        )

        embed_src = self.dropout(
            (self.src_word_embedding(src) + self.src_position_embedding(src_positions))
        )
        embed_trg = self.dropout(
            (self.trg_word_embedding(trg) + self.trg_position_embedding(trg_positions))
        )

        src_padding_mask = self.make_src_mask(src)
        trg_mask = self.transformer.generate_square_subsequent_mask(trg_seq_length).to(
            self.device
        )

        out = self.transformer(
            embed_src,
            embed_trg,
            src_key_padding_mask=src_padding_mask,
            tgt_mask=trg_mask,
        )
        out = self.fc_out(out)
        return out


# We're ready to define everything we need for training our Seq2Seq model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
load_model = False
save_model = True

# Training hyperparameters
num_epochs = 10
learning_rate = 3e-4
batch_size = 32

# Model hyperparameters
src_vocab_size = len(german.vocab)
trg_vocab_size = len(english.vocab)
embedding_size = 512
num_heads = 8
num_encoder_layers = 3
num_decoder_layers = 3
dropout = 0.10
max_len = 100
forward_expansion = 4
src_pad_idx = english.vocab.stoi["<pad>"]

# Tensorboard to get nice loss plot
writer = SummaryWriter("runs/loss_plot")
step = 0

train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
    (train_data, valid_data, test_data),
    batch_size=batch_size,
    sort_within_batch=True,
    sort_key=lambda x: len(x.src),
    device=device,
)

model = Transformer(
    embedding_size,
    src_vocab_size,
    trg_vocab_size,
    src_pad_idx,
    num_heads,
    num_encoder_layers,
    num_decoder_layers,
    forward_expansion,
    dropout,
    max_len,
    device,
).to(device)

optimizer = optim.Adam(model.parameters(), lr=learning_rate)

scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
    optimizer, factor=0.1, patience=10, verbose=True
)

pad_idx = english.vocab.stoi["<pad>"]
criterion = nn.CrossEntropyLoss(ignore_index=pad_idx)

if load_model:
    load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer)

# 'a', 'horse', 'is', 'walking', 'under', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.
sentence = "ein pferd geht unter einer brücke neben einem boot."

for epoch in range(num_epochs):
    print(f"[Epoch {epoch} / {num_epochs}]")

    if save_model:
        checkpoint = {
            "state_dict": model.state_dict(),
            "optimizer": optimizer.state_dict(),
        }
        save_checkpoint(checkpoint)

    model.eval()
    translated_sentence = translate_sentence(
        model, sentence, german, english, device, max_length=50
    )

    print(f"Translated example sentence: \n {translated_sentence}")
    model.train()
    losses = []

    for batch_idx, batch in enumerate(train_iterator):
        # Get input and targets and get to cuda
        inp_data = batch.src.to(device)
        target = batch.trg.to(device)

        # Forward prop
        output = model(inp_data, target[:-1, :])

        # Output is of shape (trg_len, batch_size, output_dim) but Cross Entropy Loss
        # doesn't take input in that form. For example if we have MNIST we want to have
        # output to be: (N, 10) and targets just (N). Here we can view it in a similar
        # way that we have output_words * batch_size that we want to send in into
        # our cost function, so we need to do some reshapin.
        # Let's also remove the start token while we're at it
        output = output.reshape(-1, output.shape[2])
        target = target[1:].reshape(-1)

        optimizer.zero_grad()

        loss = criterion(output, target)
        losses.append(loss.item())

        # Back prop
        loss.backward()
        # Clip to avoid exploding gradient issues, makes sure grads are
        # within a healthy range
        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)

        # Gradient descent step
        optimizer.step()

        # plot to tensorboard
        writer.add_scalar("Training loss", loss, global_step=step)
        step += 1

    mean_loss = sum(losses) / len(losses)
    scheduler.step(mean_loss)

# running on entire test data takes a while
score = bleu(test_data[1:100], model, german, english, device)
print(f"Bleu score {score * 100:.2f}")


utils.py文件

import torch
import spacy
from torchtext.data.metrics import bleu_score
import sys


def translate_sentence(model, sentence, german, english, device, max_length=50):
    # Load german tokenizer
    spacy_ger = spacy.load("de_core_news_sm")

    # Create tokens using spacy and everything in lower case (which is what our vocab is)
    if type(sentence) == str:
        tokens = [token.text.lower() for token in spacy_ger(sentence)]
    else:
        tokens = [token.lower() for token in sentence]

    # Add <SOS> and <EOS> in beginning and end respectively
    tokens.insert(0, german.init_token)
    tokens.append(german.eos_token)

    # Go through each german token and convert to an index
    text_to_indices = [german.vocab.stoi[token] for token in tokens]

    # Convert to Tensor
    sentence_tensor = torch.LongTensor(text_to_indices).unsqueeze(1).to(device)

    outputs = [english.vocab.stoi["<sos>"]]
    for i in range(max_length):
        trg_tensor = torch.LongTensor(outputs).unsqueeze(1).to(device)

        with torch.no_grad():
            output = model(sentence_tensor, trg_tensor)

        best_guess = output.argmax(2)[-1, :].item()
        outputs.append(best_guess)

        if best_guess == english.vocab.stoi["<eos>"]:
            break

    translated_sentence = [english.vocab.itos[idx] for idx in outputs]
    # remove start token
    return translated_sentence[1:]


def bleu(data, model, german, english, device):
    targets = []
    outputs = []

    for example in data:
        src = vars(example)["src"]
        trg = vars(example)["trg"]

        prediction = translate_sentence(model, src, german, english, device)
        prediction = prediction[:-1]  # remove <eos> token

        targets.append([trg])
        outputs.append(prediction)

    return bleu_score(outputs, targets)


def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
    print("=> Saving checkpoint")
    torch.save(state, filename)


def load_checkpoint(checkpoint, model, optimizer):
    print("=> Loading checkpoint")
    model.load_state_dict(checkpoint["state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer"])


实验结果:

输入德文:(在主程序中间位置)

sentence = "ein pferd geht unter einer brücke neben einem boot."

翻译结果为:

['a', 'horse', 'walks', 'underneath', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.', '<eos>']

跑了10个Epoch,结果如下所示:


# Result
=> Loading checkpoint
[Epoch 0 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'under', 'a', 'boat', 'next', 'to', 'a', 'boat', '.', '<eos>']
[Epoch 1 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'underneath', 'a', 'bridge', 'beside', 'a', 'boat', '.', '<eos>']
[Epoch 2 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'is', 'walking', 'beside', 'a', 'boat', 'under', 'a', 'bridge', '.', '<eos>']
[Epoch 3 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'under', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.', '<eos>']
[Epoch 4 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'under', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.', '<eos>']
[Epoch 5 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'beside', 'a', 'boat', 'next', 'to', 'a', 'boat', '.', '<eos>']
[Epoch 6 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'is', 'walking', 'underneath', 'a', 'bridge', 'under', 'a', 'boat', '.', '<eos>']
[Epoch 7 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'under', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.', '<eos>']
[Epoch 8 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'beneath', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.', '<eos>']
[Epoch 9 / 10]
=> Saving checkpoint
Translated example sentence: 
 ['a', 'horse', 'walks', 'underneath', 'a', 'bridge', 'next', 'to', 'a', 'boat', '.', '<eos>']
Bleu score 31.73

参考文献:

1、transformer的原理_transformer原理_live_for_myself的博客-CSDN博客​​​​​​
2、https://arxiv.org/abs/1706.03762
3、 https://blog.csdn.net/weixin_43632501/article/details/98731800
4、https://www.youtube.com/watch?v=M6adRGJe5cQ
5、 https://github.com/aladdinpersson/Machine-Collection/blob/masterLearning-/ML/

Pytorch/more_advanced/seq2seq_transformer/seq2seq_transformer.py
6、 https://blog.csdn.net/g11d111/article/details/100103208

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值