【TI-mmWave】一、IWR6843ISK-ODS毫米波雷达【固件烧写和上手使用】流程


项目需要,使用TI的IWR6843ISK-ODS这款毫米波雷达,记录一下自己摸索和上手的过程~
在探索过程中,参考了 https://blog.csdn.net/lowbob/article/details/105671559这篇博文的指导,在此感谢!

基础知识

Ti官方提供了详细的器件相关手册:
上古版本的视频学习资料:https://edu.21ic.com/video/2264视频是跑一个实例《mmWave生命体征实验》按这个看看,可以对官方的开发流程有个整体印象~
IWR6843的相关信息网页:https://www.ti.com/product/IWR6843
《IWR6843的用户手册》直接下载连接:https://www.ti.com.cn/cn/lit/pdf/swru546
《毫米波传感器基础知识》 手册直接下载连接:https://www.ti.com.cn/cn/lit/pdf/zhcy075

上手使用

注:如果要对固件进行开发定制,请参考此篇:https://blog.csdn.net/z5z5z5z56/article/details/124868402?spm=1001.2014.3001.5501
本篇只介绍直接使用做好的固件,直接安装串口驱动和固件烧写工具即可使用。

1.USB串口驱动

雷达需要CP210驱动:
驱动直接下载地址:https://www.silabs.com/documents/public/software/CP210x_Windows_Drivers.zip
相关网页:https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers
在这里插入图片描述
正确安装后在设备管理器,应该可以看到两个串口
在这里插入图片描述
其中,Enhanced是烧写口,后面烧写固件,应该在UniFlash中选择该口对应的串口号。

如果装了驱动设备管理器没反应,请检查USB-microB线是不是只有供电的阉割版,线没问题的情况下如果还没反应,对于台式机可以把USB连接到主机后面主板上的USB口再试试。

2.UniFlash

这是TI的用于把bin固件烧录到毫米波雷达板子里的软件。

下载链接:https://software-dl.ti.com/ccs/esd/uniflash/docs/release_archive.html
我安装的是7.1.0版本
在这里插入图片描述
旁边也有官方上手手册
根据雷达资料《用户指南-60GHz 毫米波传感器.pdf》

烧写的流程为:
在这里插入图片描述
1.就是确保在设备管理器看到端口
2.根据手册,我们需要调整开关把板子设置为烧写模式
在这里插入图片描述
即:
在这里插入图片描述
等烧写完毕要使用功能模式的时候,再把第一个开关调为0即可

345.打开UniFlash
选择对应雷达型号,点start
在这里插入图片描述
在设置中将端口号改为对于烧写口(Enhanced), 我电脑是3
在这里插入图片描述

然后在Image1选择要烧写的固件,点击load Image即可

官方的CCS工程里面自带bin固件,如果你走完了【固件开发】里面的CCS的软件安装,可以使用官方预编译好的bin文件,拿来尝试。路径:
.\ccs\tools\compiler\mmwave_industrial_toolbox_4_11_0\labs\Vital_Signs\68xx_vital_signs\prebuilt_binaries
在这里插入图片描述

在这里插入图片描述

烧写注意事项:

  • 固件所在路径不能有中文,不然会卡在烧写进度条
  • 如果一直烧写不成功,可以在Setting里面点击Format SFLASH清空之后再试试

若固件烧写成功,将雷达调回功能模式,连接电脑,打开串口助手,按雷达上的复位键,串口助手应该会出现所设置的对应提示信息,说明固件有成功烧写。
在这里插入图片描述
若没有信息:

  • 刷的bin没有串口输出
  • 换串口调试助手/串口波特率115200没设置对等设置问题

以上,雷达的驱动安装和固件烧写就完成了,根据固件功能,雷达将可以与pc端的通信,在pc端demo里面继续对数据处理进行下一步开发。
end

<think>好的,我现在需要回答用户关于如何通过雷达ADC数据生成点云图的问题。首先,我需要回顾用户提供的引用内容,确保回答符合要求,并正确引用相关来源。 根据引用[1],TI的设备可以获取两种数据:ADC的原始雷达信号处理后的毫米波雷达点云信号。用户想知道如何从ADC数据生成点云图,所以需要解析这个过程。引用[2]提到毫米波雷达数据可以用PointCloud或PointCloud2显示,这里用的是PointCloud,这可能涉及ROS中的消息类型。 首先,生成点云图的基本流程可能包括数据采集、信号处理、距离/速度/角度估计、坐标转换点云生成。需要详细说明每个步骤的具体操作,比如使用ADC原始数据需要进行FFT处理,然后通过算法提取目标参数。 接下来是工具软件部分。TI可能提供了些开发工具,如MMWave Studio或DCA1000 EVM板卡,这些工具能帮助采集处理数据。此外,MATLABPython中的库(如NumPy、SciPy)可能用于信号处理可视化。ROS的PointCloud消息类型用于显示点云,可能需要用到PCL库。 在实现步骤中,用户需要先配置雷达参数,捕获ADC数据,然后进行预处理(比如加窗、滤波)。然后进行3D FFT处理,生成距离-多普勒图。接着通过CFAR检测目标,估计角度,最后将极坐标转换为笛卡尔坐标,生成点云数据并可视化。 注意事项方面,要提到雷达参数的重要性,噪声处理,以及不同雷达系统的差异。可能还需要推荐TI的文档ROS的相关工具包。 现在需要确保回答结构清晰,分步骤说明,并正确引用提供的引用内容。同时,按照系统指令,数学公式使用$...$,独立公式用$$...$$,用中文回答,最后生成相关问题。</think>### 如何通过雷达ADC数据生成点云图? #### **基本原理与流程** 1. **数据采集** 雷达通过发射调频连续波(FMCW)并接收反射信号,原始ADC数据记录了回波信号的幅度相位信息[^1]。这些数据通常以复数形式存储,包含目标的距离、速度、角度等信息。 2. **信号处理** - **距离估计**:通过快速傅里叶变换(FFT)将时域ADC信号转换为频域,得到目标的距离信息: $$ R = \frac{c \cdot \Delta f}{2 \cdot S} $$ 其中$c$为光速,$S$为调频斜率,$\Delta f$为频率差。 - **速度估计**:通过多普勒FFT分析相位变化,计算目标速度。 - **角度估计**:利用多天线阵列的相位差,通过波束形成或MUSIC算法估计目标的方位角。 3. **点云生成** 将目标的距离、速度、角度转换为笛卡尔坐标系下的三维坐标$(x, y, z)$: $$ x = R \cdot \sin\theta \cdot \cos\phi \\ y = R \cdot \sin\theta \cdot \sin\phi \\ z = R \cdot \cos\theta $$ 其中$\theta$为俯仰角,$\phi$为方位角。 --- #### **工具与方法** 1. **硬件工具** - **TI毫米波雷达开发套件**:如IWR6843ISK-ODS,支持ADC数据采集与处理[^1]。 - **DCA1000 EVM板卡**:用于高速ADC数据捕获。 2. **软件工具** - **MATLAB/Simulink**:提供雷达工具箱(Radar Toolbox),支持FFT、CFAR检测、点云生成。 - **Python库**: - `NumPy/SciPy`:用于信号处理与FFT计算。 - `Open3D/PyVista`:用于点云可视化。 - **ROS与PCL**:通过ROS的`PointCloud`消息类型PCL库实现实时点云显示[^2]。 3. **实现步骤** ```python # 示例:Python中生成点云的简化流程 import numpy as np from scipy.fft import fft # 1. 读取ADC数据并预处理(去噪、加窗) adc_data = np.load("adc_samples.npy") windowed_data = adc_data * np.hamming(len(adc_data)) # 2. 距离FFT range_fft = fft(windowed_data) range_profile = np.abs(range_fft) # 3. 多普勒FFT与CFAR检测 # (此处需实现二维FFT与目标检测) # 4. 坐标转换与点云生成 points = [] for target in detected_targets: x, y, z = polar_to_cartesian(target['range'], target['azimuth'], target['elevation']) points.append([x, y, z]) # 5. 可视化 import open3d as o3d pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) o3d.visualization.draw_geometries([pcd]) ``` --- #### **注意事项** 1. **参数校准**:雷达的调频斜率、天线间距等参数需精确配置,否则会导致坐标误差。 2. **噪声抑制**:需使用CFAR(恒虚警率检测)或滤波算法(如Kalman滤波)去除杂波。 3. **实时性优化**:可借助GPU加速(如CUDA)或嵌入式DSP提升处理速度。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值