视觉问答学习(二)——堆叠注意力网络SAAA(tensorflow实现)(未完待续)

本文档介绍了基于Tensorflow实现的视觉问答模型SAAA,源自《Show, Ask, Attend, and Answer》论文。文章详细讨论了模型背景,包括数据集的处理变化,并概述了实验流程,包括环境配置、数据准备、模型结构和训练过程。" 6451160,1022329,SQL Server与Excel的数据交互操作指南,"['sql server', 'excel', 'microsoft', '数据交互']
摘要由CSDN通过智能技术生成

一、背景

本文实现的模型来自于论文:《Show, Ask,Attend, and Answer: A Strong Baseline For Visual Question Answering》

该模型比较经典,也是本系列的第二篇视觉问答模型,主要参考代码【1】,但是由于原模型中,数据集封装的比较好,复现到其他数据集上的话会比较困难,因此我把数据集部分的读取和加载做了改动。

【1】https://github.com/momih/vqa_tensorflow

二、论文简介

这篇论文之前介绍过,这里不多做介绍,直接给出之前的记录:【文献阅读】SAAA——堆叠多层注意力的VQA网络(T. Do等人,ArXiv,2017,有代码)。方便起见,这里贴出该模型的结构图:

三、实验介绍

所有文件结构为:

-- d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全部梭哈迟早暴富

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值