一、Dify平台与工作流核心价值
Dify作为开源LLM应用开发平台,通过可视化工作流编排降低了AI应用开发门槛。其核心优势包括:
- 全栈支持:集成RAG管道、Agent框架、多模型兼容(支持GPT-4至Llama3等200+模型)
- 工程化设计:内置LLMOps功能,实现应用监控、日志分析与持续优化
- 低代码开发:非技术人员可通过拖拽节点完成复杂AI任务编排
二、工作流创建全流程详解
1. 基础创建工作流
步骤示例(以小红书文案生成为例):
创建空白应用 → 选择"工作流"类型 → 命名保存 → 进入画布编辑器
-
节点配置:
- 开始节点:定义输入参数(如标题主题、内容方向)
- LLM节点:串联标题生成→正文生成,需配置提示词模板
# 标题生成提示词示例
"作为小红书爆款文案专家,请根据主题'{input}'生成5个吸引人的标题"
- 模板转换节点:合并标题与正文,添加Emoji等格式化处理
- 结束节点:输出最终结果
-
运行测试:
- 输入测试参数 → 点击"运行" → 实时查看各节点执行状态
2. 进阶组件配置
组件类型 | 功能说明 | 应用场景 |
---|---|---|
LLM节点 | 调用大模型生成文本/代码 | 内容生成、数据分析 |
HTTP请求 | 调用外部API获取实时数据 | 股票行情、天气查询 |
代码执行 | 运行Python/JS脚本处理数据 | JSON解析、数学计算 |
迭代节点 | 循环处理数组数据 | 批量生成、多结果处理 |
条件分支 | 根据变量值选择执行路径 | 异常处理、多场景分流 |
三、API集成与自动化
1. API密钥生成
- 进入「应用设置」→「API集成」
- 创建新密钥 → 设置权限范围 → 记录
API_KEY
2. 工作流调用示例
import requests
url = "https://api.dify.ai/v1/workflows/run"
headers = {"Authorization": "Bearer {API_KEY}"}
data = {
"inputs": {"topic": "春季穿搭"},
"response_mode": "blocking"
}
response = requests.post(url, json=data, headers=headers)
print(response.json())