Llama + Dify,在你的电脑搭建一套AI工作流


> 本文可在公众号「德育处主任」免费阅读

点赞 + 关注 + 收藏 = 学会了

本文简介

最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。

01.png

那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了,断网的时候也能使用AI。

刚好最近 Llama 3.1 发布了,本文就以 Llama 3.1 作为基础模型,配合 Dify 在本地搭建一套“Coze”。

跟着本文一步步操作,保证能行!

Dify是什么?

Dify 官网(Dify.AI · 生成式 AI 应用创新引擎) 的自我介绍:Dify 是开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。比 LangChain 更易用。

02.png

动手搭建

在本地搭建这个平台很简单,其实 Dify文档(https://docs.dify.ai/v/zh-hans) 里都写得明明白白了,而且还有中文文档。

具体来说需要做以下几步:

  1. 安装 Ollama
  2. 下载大模型
  3. 安装 Docker
  4. 克隆 Dify 源代码至本地
  5. 启动 Dify
  6. 配置模型

接下来一步步操作。

安装 Ollama

简单来说 Ollama 是运行大语言模型的环境,这是 Ollama 的官网地址 https://ollama.com/,打开它,点击 Download 按钮下载 Ollama 客户端,然后傻瓜式安装即可(一直点“下一步”)。

LLaMA+Alpaca是一个基于PyTorch的自然语言处理框架,主要用于生成式对话模型的训练和部署。以下是搭建、部署、训练LLaMA+Alpaca的步骤: 1. 安装依赖项:在安装LLaMA+Alpaca之前需要安装以下依赖项: - Python 3.7或更高版本 - PyTorch 1.7或更高版本 - Transformers 4.0或更高版本 - Flask 2. 下载代码:可以从LLaMA+Alpaca的GitHub页面上下载代码,也可以使用以下命令从GitHub上克隆代码: ``` git clone https://github.com/microsoft/LLaMA.git ``` 3. 部署:可以使用以下命令启动LLaMA+Alpaca的部署: ``` cd LLaMA/deployment python app.py ``` 这将会在本地启动一个Flask服务器并提供对话API。 4. 训练模型:可以使用以下命令在LLaMA+Alpaca上训练对话模型: ``` python train.py \ --dataset_path <path-to-dataset> \ --tokenizer_name <tokenizer-name> \ --model_name_or_path <model-name-or-path> \ --output_dir <output-dir> \ --num_train_epochs <num-epochs> \ --per_device_train_batch_size <batch-size> \ --gradient_accumulation_steps <accumulation-steps> \ --learning_rate <learning-rate> ``` 其中,\<path-to-dataset>是对话数据集的路径,\<tokenizer-name>和\<model-name-or-path>分别是使用的tokenizer和模型名称或路径,\<output-dir>是输出路径,\<num-epochs>是训练的epoch数,\<batch-size>是每个GPU上的批量大小,\<accumulation-steps>是梯度累积步骤数,\<learning-rate>是学习率。 5. 部署新模型:可以使用以下命令将新训练的模型部署到Flask服务器上: ``` python update_model.py \ --model_path <path-to-model> \ --tokenizer_name <tokenizer-name> \ --model_name <model-name> ``` 其中,\<path-to-model>是新训练的模型路径,\<tokenizer-name>是使用的tokenizer名称,\<model-name>是新模型名称。 以上就是搭建、部署、训练LLaMA+Alpaca的步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值