🔥关注墨瑾轩,带你探索Java的奥秘!🚀
🔥超萌技术攻略,轻松晋级编程高手!🚀
🔥技术宝库已备好,就等你来挖掘!🚀
🔥订阅墨瑾轩,智趣学习不孤单!🚀
🔥即刻启航,编程之旅更有趣!🚀
让我们一起深入了解Jupyter Notebook与VS Code Notebook在数据科学工作流中的应用。这两个工具都是数据科学家和分析师的得力助手,各有千秋,适合不同的工作习惯和需求。下面我会分别展示它们的基本使用方法,并通过实际代码示例来说明。
引言
在数据科学领域,选择合适的开发环境对于提升工作效率至关重要。Jupyter Notebook作为经典的交互式编程环境,已经深入人心;而Visual Studio Code(VS Code)凭借其高度可定制性和丰富的插件生态,也逐渐成为数据科学家的新宠,特别是配合其内置的Notebook功能。
Jupyter Notebook
安装与启动
首先确保已安装Python和Jupyter。打开终端,输入以下命令安装Jupyter Notebook:
Bash
1pip install jupyter
2jupyter notebook
这将在浏览器中启动Jupyter Notebook。
创建与运行Notebook
在Jupyter界面,新建Python 3 Notebook。编写简单的数据分析代码:
Python
1# Jupyter Notebook 示例
2import pandas as pd
3import numpy as np
4
5# 加载数据集 - 以Iris数据集为例
6url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
7column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']
8iris_data = pd.read_csv(url, names=column_names)
9
10# 数据探索 - 显示数据集的前5行
11iris_data.head()
点击运行单元格,Jupyter会立即显示输出结果。
VS Code Notebook
安装与配置
确保已安装VS Code和Python插件。额外安装Jupyter插件以启用Notebook功能:
- 在VS Code中,点击侧边栏的扩展按钮(或按
Ctrl+Shift+X
)。 - 搜索“Jupyter”,安装“Jupyter”插件。
创建Notebook
在VS Code中,选择文件 > 新建文件,然后从右下角选择“创建新Jupyter Notebook”。
编写代码
在新创建的Notebook中,你可以直接编写Python代码块,就像在Jupyter中一样:
Python
1# VS Code Notebook 示例
2# 同样的数据加载与探索
3import pandas as pd
4import numpy as np
5
6url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
7column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']
8iris_data = pd.read_csv(url, names=column_names)
9iris_data.head()
按Shift+Enter
运行单元格。
正文
特性对比
- 交互性: 两者都提供了实时代码执行环境,便于快速迭代和测试。
- 编辑体验: Jupyter Notebook原生为Web应用,简洁直观;VS Code Notebook结合了IDE的强大功能,如代码自动补全、调试工具等。
- 版本控制: VS Code由于基于文件系统工作,与Git等版本控制系统集成更为紧密,便于团队协作。
- 扩展性: VS Code通过丰富的插件生态系统,支持更多语言和工具链;Jupyter则侧重于数据科学生态,通过Notebook内核支持多种编程语言。
应用场景
- 对于初学者或快速原型开发,Jupyter Notebook因其易于上手和即开即用的特性更受欢迎。
- 对于需要深度编码、项目管理和版本控制的专业开发者,VS Code Notebook结合其强大的IDE特性,提供了更全面的解决方案。
结论
Jupyter Notebook与VS Code Notebook各有千秋,选择哪个取决于你的具体需求。如果你追求纯粹的数据分析体验和分享便利,Jupyter可能是更好的选择。而如果你的工作涉及复杂的开发流程、需要高级IDE功能,或是频繁地进行团队协作,那么VS Code Notebook会是更加强大和灵活的工具。无论哪种选择,掌握它们都能极大提升你的数据科学工作流效率。