learning rich features from rgb-d images for object detection and segmentation

简介:

利用前人已有的研究成果,对RGB-D数据进行更加深层次的挖掘,在已有的神经深度网络和SVM的技术支持下,对数据进行分割以及语义标签的标识。


contour detection

在作者原有的工作成果基础上,结合另一篇参考文献的方法,提出一种融合的方法,主要体现在geocentric encoding of depth.

candidate ranking

利用著名的MCG模型对检测区域进行object proposals,涉及到随机森林分类器。

RGB-D object detectors

改造已有的CNN学习网络,使其能够适用于RGB-D数据,企图从深度数据中提取出类似与灰度图像一样丰富的信息。参见原文:

horizontal disparity, height above ground, and the angle the pixel’s local surfacenormal makes with the inferred gravity direction

note: the network used for training is extremely huge.

experiments


以上





  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值