indoor segmentation and support inference from rgbd images

aim:

In this paper, our goal is to provide such a physical scene parse: to segment visible regions into surfaces and objects and to infer their support relations. In particular, we are interested in indoor scenes that reflect typical living conditions.

difficulties:

prevalence of small objects, and heavy occlusion, which are all compounded by the mess and disorder that are common in lived-in rooms.

advantages:

large planar surfaces, such as floor, walls, and table tops, and objects can often be interpreted in relation to those surfaces. estimating the floor orientation or finding large planar surfaces are much easier with depth information.






key technology:






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值