Ubuntu18.04实现bmask-rcnn代码

Ubuntu18.04实现bmask-rcnn

配置环境

cuda 11.1在这里插入代码片
cudnn
cudatoolkit 11.1.1
python 3.8 刚开始使用的是3.6,但是在安装torch1.9版本的时候冲突,需要python3.7及以上,所以直接安装了3.8
torch 1.9.0+cu111
torchaudio 0.9.0
torchvision 0.10.0+cu111
(选用 torch1.9是因为torch1.8和bmask rcnn使用的框架detectron2冲突,会出现错误RuntimeError: radix_sort: failed on 1st step: cudaErrorInvalidDevice: invalid device ordinal)

// 创建环境
conda create --name detectron2 python==3.8
//下载cudatoolkit,在base环境中安装过了cuda和cudnn,这里没有安装也可使用
conda activate detectron2
conda install -c anaconda cudatoolkit=11.1.1
//安装totch等
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
//安装detectron2
 pip install fvcore
 pip install cython
 pip install pycocotools
 python -m pip install detectron2 -f   https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html
  //最容易安装的一句话,和版本也对着,直接安装成功
  //开始运行
cd projects/BMaskR-CNN
python train_net.py --config-file configs/bmask_rcnn_R_50_FPN_1x.yaml --num-gpus 1
//看自己的GPU有几个,直接写就行

到这里大概率有点小错误,都是一些版本太高,不匹配的问题。
1.AttributeError: module ‘numpy‘ has no attribute ‘bool‘.
降低版本

pip uninstall numpy
pip install numpy==1.19.2

2.安装opencv-python

pip install opencv-python

3.AttributeError: module ‘PIL.Image’ has no attribute ‘LINEAR’.降低pillow版本

pip uninstall pillow
pip install pillow==8.4.0

4.AttributeError: module ‘distutils‘ has no attribute ‘version‘,
修改了这个函数,4,6,7,10加了注释,就可以了

import tensorboard
from setuptools import distutils

#LooseVersion = distutils.version.LooseVersion

#if not hasattr(tensorboard, '__version__') or LooseVersion(tensorboard.__version__) < LooseVersion('1.15'):
#    raise ImportError('TensorBoard logging requires TensorBoard version 1.15 or above')

del distutils
#del LooseVersion
del tensorboard

from .writer import FileWriter, SummaryWriter  # noqa: F401
from tensorboard.summary.writer.record_writer import RecordWriter  # noqa: F401

5.FloatingPointError: Predicted boxes or scores contain Inf/Nan. Training has diverged.
还有GPU内存不够的问题。

_BASE_: Base-BMask-R-CNN-FPN.yaml
MODEL:
  WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl
  MASK_ON: true
  RESNETS:
    DEPTH: 50
INPUT:
  MIN_SIZE_TRAIN: (800,)
TEST:
  EVAL_PERIOD: 10000
DATASETS:
  TRAIN: ("coco_2017_train",)
  TEST: ("coco_2017_val",)
SOLVER:
  #IMS_PER_BATCH: 16
  IMS_PER_BATCH: 4
  #BASE_LR: 0.02
  BASE_LR: 0.001
  STEPS: (60000, 80000)
  MAX_ITER: 90000
OUTPUT_DIR: "output/bmask_rcnn_r50_1x"

主要修改IMS_PER_BATCH: 4, BASE_LR: 0.001

好啦,到这里就配置完成了环境,再次运行语句,就可以成功运行了,一般来说,出现问题都是环境没有配置好,要认真检查。
下面是一张成功运行的截图
在这里插入图片描述

COCO数据集下载链接,巨快!

https://aistudio.baidu.com/datasetdetail/7122
下载后保存的格式如下
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值