爬楼梯、青蛙跳

爬楼梯

题目出处: https://leetcode-cn.com/problems/climbing-stairs/
在这里插入图片描述
思路:动态规划,设dp[i]为爬到第i阶有的方法数。
状态转移方程:当前若在第i阶,那么一定是从第i-1阶或者第i-2阶爬上来的。所以dp[i]=dp[i-1]+dp[i-2]

class Solution {
public:
    int climbStairs(int n) {
        if(n == 0){
            return 0;
        }else if(n == 1){
            return 1;
        }else if(n == 2){
            return 2;
        }

        vector<int> dp(n+1, 0);
        dp[1] = 1;
        dp[2] = 2;  
        for(int i = 3; i <= n; ++i){
           dp[i] = dp[i-1]+dp[i-2];
        }

        return dp[n];
    }
};

使用最小花费爬楼梯

题目出处:https://leetcode-cn.com/problems/min-cost-climbing-stairs/
在这里插入图片描述

方法1

思路:设dp[i]是到达第i个阶梯对应的最小体力花费。
状态转移方程:dp[i]=min(dp[i-1], dp[i-2])+cost[i]

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1, 0);
        dp[0] = 0;
        dp[1] = cost[0]; //10
        dp[2] = cost[1];  //15
        for(int i = 3; i <= n; ++i){
           dp[i] = min(dp[i-1], dp[i-2]) + cost[i-1]; 
        }

        return min(dp[n-1], dp[n]);  
    }
};

方法2

dp[i]:到达第i阶的最小花费
dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n + 1);
        dp[0] = dp[1] = 0;
        for (int i = 2; i <= n; i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值