跳跃游戏

这篇博客探讨了LeetCode上的跳跃游戏问题的三种解决方案:递归、树状数组和平衡二叉搜索树。每种方法都通过示例代码详细解释了如何在给定的限制下确定是否可以从起始位置到达目标位置。递归方法虽然直观但可能超时,树状数组和平衡二叉搜索树提供了更高效的解决方案。
摘要由CSDN通过智能技术生成

题目出处:https://leetcode-cn.com/problems/jump-game-vii/
在这里插入图片描述
方法一:递归方法(超时)

class Solution {
private:
    bool flag = false;            
public:
    void dfs(int start, vector<bool>& vis, string &s, int& minJump, int& maxJump){
        int nextl = start + minJump;
        int nextr = start + maxJump;
        if(nextl <= s.length()-1 && nextr >= s.length()-1 && s[s.length()-1] == '0'){
            flag = true;
            return;
        }
            
        for(int g = nextl; g <= min(nextr, (int)(s.length()-1)) && !flag; ++g){
            if(s[g] == '0' && !vis[g]){
                vis[g] = true;
                dfs(g, vis, s, minJump, maxJump);
                vis[g] = false;
            }
        }         
    }
    bool canReach(string s, int minJump, int maxJump) {
        if(s[s.length()-1] == '1'){
            return false;
        }
        vector<bool> vis(s.length(), false);
        dfs(0, vis, s, minJump,  maxJump);
        
        return flag;
    }
};

方法二:树状数组

inline int lowbit(int x) {
    return x & (-x);
}

class Solution {
public:
    bool canReach(string s, int minJump, int maxJump) {        
        int n = s.size();
        if (s[n - 1] == '1')
            return false;
        
        vector<int> zero;
        for (int i = 0; i < n; ++i)
            if (s[i] == '0')
                zero.emplace_back(i);
        int m = zero.size();
        
        vector<int> a(m + 1);
        auto query = [&](int pos) {
            int ans = 0;
            for (; pos; pos -= lowbit(pos))
                ans += a[pos];
            return ans;
        };
        auto update = [&](int pos, int val) {
            for (; pos <= m; pos += lowbit(pos))
                a[pos] += val;
        };

        update(1, 1);
        update(2, -1);
        int l = 0, r = 0;
        for (int i = 1; i < m; ++i) {
            if (query(i) > 0) {
                while (l < m && zero[l] < zero[i - 1] + minJump)
                    l++;
                while (r < m && zero[r] <= zero[i - 1] + maxJump)
                    r++;
                update(l + 1, 1), update(r + 1, -1);
            }
        }
        
        return query(m) > 0;
    }
};

方法三:平衡二叉搜索树
思路:用有序集合维护所有为0的位置。将已经可以额到达的位置从集合中删除。

class Solution {
public:
    bool canReach(string s, int minJump, int maxJump) {        
        int n = s.size();
        if (s[n - 1] == '1')
            return false;
        
        vector<int> zero;
        for (int i = 0; i < n; ++i)
            if (s[i] == '0')
                zero.emplace_back(i);
        int m = zero.size();
        vector<bool> can(n);
        can[0] = true;
        set<int> st(zero.begin(), zero.end());
        for (int i = 0; i + 1 < m; ++i) {
            if (can[zero[i]]) {
                vector<int> destinations;
                for (auto it = st.lower_bound(zero[i] + minJump); it != st.upper_bound(zero[i] + maxJump); ++it) {
                    destinations.emplace_back(*it);
                }
                for (int destination : destinations) {
                    can[destination] = true;
                    st.erase(destination);
                }
            }
        }
        
        return can[n - 1];
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值