conda环境常用命令说明

本文详细介绍Anaconda的升级、卸载、环境管理和包管理的基本命令,包括如何使用Anaconda安装TensorFlow,设置Jupyter Notebook的工作目录,以及如何配置Anaconda镜像源,如阿里云和清华源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

升级

conda update conda
conda update anaconda
conda update anaconda-navigator    //update最新版本的anaconda-navigator   

卸载

计算机控制面板->程序与应用->卸载        //windows
rm -rf anaconda    //ubuntu

最后,建议清理下.bashrc中的Anaconda路径。
conda环境使用基本命令:

conda update -n base conda        //update最新版本的conda
conda create -n xxxx python=3.5   //创建python3.5的xxxx虚拟环境
conda activate xxxx               //开启xxxx环境
conda deactivate                  //关闭环境
conda env list                    //显示所有的虚拟环境

anaconda安装最新的TensorFlow版本

参考:已解决:用anaconda安装最新的TensorFlow版本_Mr番茄蛋的博客-CSDN博客_anoconda安装tensorflow

  1. 打开anaconda-prompt
  2. 查看tensorflow各个版本:(查看会发现有一大堆TensorFlow源,但是不能随便选,选择可以用查找命令定位)
    anaconda search -t conda tensorflow
  3. 找到自己安装环境对应的最新TensorFlow后(可以在终端搜索anaconda,定位到那一行),然后查看指定包
    anaconda show <USER/PACKAGE>
  4. 查看tensorflow版本信息
    anaconda show anaconda/tensorflow
  5. 第4步会提供一个下载地址,使用下面命令就可安装1.8.0版本tensorflow
conda install --channel https://conda.anaconda.org/anaconda tensorflow=1.8.0 

更新,卸载安装包:

conda list         #查看已经安装的文件包
conda update xxx   #更新xxx文件包
conda uninstall xxx   #卸载xxx文件包

删除虚拟环境

conda remove -n xxxx --all //创建xxxx虚拟环境

清理(conda瘦身)

conda clean就可以轻松搞定!第一步:通过conda clean -p来删除一些没用的包,这个命令会检查哪些包没有在包缓存中被硬依赖到其他地方,并删除它们。第二步:通过conda clean -t可以将conda保存下来的tar包。

conda clean -p      //删除没有用的包
conda clean -t      //tar打包

参考:Conda常用命令整理_CharlotteMen的博客-CSDN博客_conda 命令

jupyter notebook默认工作目录设置

参考:Jupyter notebook改变默认的的工作目录_Lee_Wei4939的博客-CSDN博客_jupyter更改工作目录
1)在Anaconda Prompt终端中输入下面命令,查看你的notebook配置文件在哪里:

jupyter notebook --generate-config
//会生成文件C:\Users\用户\.jupyter\jupyter_notebook_config.py

2)打开jupyter_notebook_config.py文件通过搜索关键词:c.NotebookApp.notebook_dir,修改如下

c.NotebookApp.notebook_dir = 'E:\\tf_models'     //修改到自定义文件夹

3)然后重启notebook服务器就可以了
注:其它方法直接命令到指定目录,Anaconda Prompt终端中输:jupyter notebook 目录地址

# 列出当前环境下所有安装的 conda 包。
$ conda list
 
# 列举一个指定环境下的所有包
$ conda list -n env_name
 
# 查询库
$ conda search scrapys
 
# 安装库安装时可以指定版本例如:(scrapy=1.5.0)
$ conda install scrapy
 
# 为指定环境安装某个包
$ conda install --name target_env_name package_name
 
# 更新安装的库
$ conda update scrapy
 
# 更新指定环境某个包
$ conda update -n target_env_name package_name
 
# 更新所有包
$ conda update --all
 
# 删除已经安装的库也尅用(conda uninstall)
$ conda remove scrapy
 
# 删除指定环境某个包
$ conda remove -n target_env_name package_name
 
# 删除没有用的包
$ conda clean -p

Anaconda镜像

简介

Anaconda是一个用于科学计算的Python发行版,支持Linux, Mac, Windows,包含了众多流行的科学计算、数据分析的Python包。

下载地址:anaconda安装包下载_开源镜像站-阿里云

配置方法

Anaconda 配置

Anaconda 安装包可以到 anaconda-archive安装包下载_开源镜像站-阿里云 下载。

Linux用户可以通过修改用户目录下的 .condarc 文件。

Windows 用户无法直接创建名为 .condarc 的文件,可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改。

注:由于更新过快难以同步,我们不同步pytorch-nightlypytorch-nightly-cpuignite-nightly这三个包。

阿里源

channels:
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud

清华源

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

即可添加 Anaconda Python 免费仓库。

配置完成可运行 conda clean -i 清除索引缓存。

Miniconda 安装包可以到 anaconda-miniconda安装包下载_开源镜像站-阿里云 下载。

相关链接

参考地址:

  1. https://www.jianshu.com/p/7ebe1df808ba
  2. https://blog.csdn.net/czsnooker/article/details/123293266
  3.  https://www.anaconda.com/
  4. https://developer.aliyun.com/mirror/anaconda
  5. https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
<think>嗯,用户之前问了如何检查电脑上的Python版本,现在又问了conda是什么命令。看起来他们可能在使用Python的过程中遇到了环境管理的问题,或者对Anaconda产生了兴趣。我需要先确定用户对conda的了解程度。 用户之前的问题涉及多个操作系统和Anaconda环境,所以可能他们已经安装了Anaconda,或者在某个教程中看到conda命令。现在他们想进一步了解conda的具体功能和用法。 首先,我应该解释conda是什么,它的主要功能,以及它与pip的区别。用户可能知道pip是Python的包管理器,但conda不仅是包管理器,还是环境管理器,支持多语言,这点需要强调。 然后,要列举常见的conda命令,比如创建环境、安装包、导出环境配置等,这些对新手来说很实用。用户之前可能已经用到了conda env list,所以在介绍时可以结合他们之前的例子。 还要注意用户可能遇到的环境管理问题,比如如何切换环境,如何解决依赖冲突。这时候需要给出具体的命令示例,比如conda activate和conda deactivate。 另外,用户可能对conda和虚拟环境(如venv)的区别不清楚,可以简单对比,说明conda的优势,比如跨平台、管理非Python包等。 最后,确保回答结构清晰,分点列出,方便用户快速查找所需信息。避免使用过多技术术语,保持口语化,让解释更易懂。同时提醒用户常见问题,比如环境激活失败或者命令找不到,可能需要检查安装或PATH配置。</think>以下是关于 **conda** 的详细介绍,包括其功能、常用命令及使用场景: --- ### **一、conda 是什么?** - **核心功能**: - **包管理器**:安装、更新、卸载软件包(不仅限于 Python,还支持 R、C/C++ 等语言的库)。 - **环境管理器**:创建和管理独立环境,隔离不同项目的依赖版本(类似 Python 的 `venv`,但功能更强大)。 - **所属平台**: - 由 Anaconda 发行版提供,常用于数据科学、机器学习等领域。 - 分为 **Anaconda**(完整版,预装大量科学计算库)和 **Miniconda**(轻量版,仅含基础工具)。 --- ### **二、conda 与 pip 的区别** | **特性** | **conda** | **pip** | |------------------|--------------------------------|--------------------------| | 管理范围 | 多语言包(Python/R/C等) | 仅 Python 包 | | 依赖解决 | 自动处理非 Python 依赖(如MKL)| 仅处理 Python 依赖 | | 环境隔离 | 内置环境管理工具 | 依赖 `venv` 或第三方工具 | | 包来源 | Anaconda 仓库、conda-forge | PyPI | --- ### **三、conda 常用命令** #### **1. 环境管理** | 命令 | 作用 | |-------------------------------|----------------------------------| | `conda create --name myenv` | 创建名为 `myenv` 的空白环境 | | `conda create -n myenv python=3.9` | 创建指定 Python 版本的环境 | | `conda activate myenv` | 激活环境 | | `conda deactivate` | 退出当前环境 | | `conda env list` | 列出所有环境 | | `conda remove --name myenv --all` | 删除环境 | #### **2. 包管理** | 命令 | 作用 | |-------------------------------|----------------------------------| | `conda install numpy` | 安装包(自动解决依赖) | | `conda install numpy=1.21` | 安装指定版本包 | | `conda update numpy` | 更新包 | | `conda remove numpy` | 卸载包 | | `conda list` | 查看当前环境中已安装的包 | #### **3. 配置与维护** | 命令 | 作用 | |-------------------------------|----------------------------------| | `conda search tensorflow` | 搜索可用包版本 | | `conda config --show` | 查看 conda 配置 | | `conda clean --all` | 清理缓存和未使用的包 | | `conda info` | 显示 conda 系统信息 | #### **4. 环境导出与共享** | 命令 | 作用 | |-------------------------------------------|----------------------------------| | `conda env export > environment.yml` | 导出当前环境的依赖到 YAML 文件 | | `conda env create -f environment.yml` | 根据 YAML 文件创建环境 | --- ### **四、典型使用场景** 1. **隔离项目依赖** - 为不同项目创建独立环境,避免包版本冲突(例如:项目 A 用 TensorFlow 2.x,项目 B 用 TensorFlow 1.x)。 2. **安装复杂科学计算库** - 通过 conda 自动处理非 Python 依赖(如 NumPy 的 MKL 加速库)。 3. **跨平台协作** - 导出 `environment.yml` 文件,确保他人能复现相同的环境。 --- ### **五、常见问题** 1. **命令报错 `conda: command not found`** - 未安装 conda 或未将其添加到系统 PATH 环境变量。 - 解决方法:重新安装 Miniconda/Anaconda,并确保安装时勾选“添加到 PATH”。 2. **conda 下载包速度慢** - 切换国内镜像源(如清华、中科大源): ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` 3. **conda 与 pip 混用导致依赖冲突** - 建议在 conda 环境中优先使用 `conda install`,若必须用 pip,最后再执行 `pip install`。 --- ### **六、进阶工具** - **conda-forge**:社区维护的 conda 包仓库,提供更丰富的软件包。 - **mamba**:conda 的替代品,依赖解决速度更快(安装:`conda install mamba -n base -c conda-forge`)。 --- 掌握 conda 可以大幅提升多项目管理效率,尤其适合需要复杂依赖和数据科学工具的场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值