回顾上节课
损失函数
svm
如果正确类别的分数高于错误类别的分数,则我们称之为0损失
计算案例
代表我们的分类器在这个数据集上的损失是5.27
问题1:为何损失函数选择了加1
答:实际上我们并不关心分数的绝对值。在这个函数中,我们只关注分数之间的相对差异,我们只关注正确类别的分数要远大于错误的类别的分数,所以事实上如果你把你整个W放大或缩小,那么它会相应的重新调整所有的分数。就像W中标度的整体设置
问题:
答:比如有两个W,一个是W1(1,0,0,0),一个是W2(0.25,0.25,0.25,0.25)L1更喜欢W1,L2更喜欢W2,
Softmax Classifier
回答:SVM损失唯一关心的是使正确分数大于错误分数的余量,Softmax损失实际上总是希望将概率质量一直驱动到1,所以即使你给正确的class打了很高的分数,给不正确的class打了很低的分数,softmax会让你在正确的类上堆积越来越多的概率质量,并将正确类的分数推向无穷大,错误类下降到负无穷大。在实际中,这两种损失函数效果基本一样
优化Optimization
在现实中W不会只有10个class,有可能是几千上万个,所以不能用有限差分来计算,太慢了
stepsize称为学习率或者步长,是经常检查的第一个超参数,诸如模型大小或则正则化强度之类的事情会留到稍后,获得正确的stepsize往往是第一步
红色是我们想要的低损失区域,而靠近边缘的蓝色和绿色区域是我们想要避免的更高损耗。我们从空间中某个随机点开始我们的W,然后我们将计算负导数(梯度,斜率)方向,这有望最终将我们指向最小值的方向,如果我们一遍又一遍的重复这一点并向这点移动,我们最终到达确切的最小值
图像特征
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8rpsyBsn-1625210360868)(C:\Users\27750\AppData\Roaming\Typora\typora-user-images\image-20210702110349639.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ThFJcz3t-1625210360869)(C:\Users\27750\AppData\Roaming\Typora\typora-user-images\image-20210702110538256.png)]