[3]Loss Functions and Optimization—损失函数和优化

回顾上节课

image-20210627104050623

image-20210627104421343

image-20210627104729488

损失函数

svm

image-20210627111351684

image-20210627154636479

如果正确类别的分数高于错误类别的分数,则我们称之为0损失

image-20210627155553413

计算案例

image-20210627161719563

image-20210627162104282

image-20210627162118126

代表我们的分类器在这个数据集上的损失是5.27

问题1:为何损失函数选择了加1

答:实际上我们并不关心分数的绝对值。在这个函数中,我们只关注分数之间的相对差异,我们只关注正确类别的分数要远大于错误的类别的分数,所以事实上如果你把你整个W放大或缩小,那么它会相应的重新调整所有的分数。就像W中标度的整体设置

image-20210627211748442

image-20210627211923658

image-20210627212144372

image-20210628093449470

image-20210628101020555

image-20210628101305086

image-20210628102213179

image-20210628102923078

image-20210628105306989

问题:

image-20210628105431728

答:比如有两个W,一个是W1(1,0,0,0),一个是W2(0.25,0.25,0.25,0.25)L1更喜欢W1,L2更喜欢W2,

image-20210628110134564

Softmax Classifier

image-20210702092834879

image-20210702093545027

image-20210702094509762

image-20210702094652871

image-20210702095100789

image-20210702095405915

回答:SVM损失唯一关心的是使正确分数大于错误分数的余量,Softmax损失实际上总是希望将概率质量一直驱动到1,所以即使你给正确的class打了很高的分数,给不正确的class打了很低的分数,softmax会让你在正确的类上堆积越来越多的概率质量,并将正确类的分数推向无穷大,错误类下降到负无穷大。在实际中,这两种损失函数效果基本一样

image-20210702100527683

优化Optimization

image-20210702101025422

image-20210702101255107

image-20210702101509900

image-20210702102659555

image-20210702102747460

image-20210702102957456

在现实中W不会只有10个class,有可能是几千上万个,所以不能用有限差分来计算,太慢了

image-20210702103149734

image-20210702103422005

image-20210702103447791

image-20210702103936618

stepsize称为学习率或者步长,是经常检查的第一个超参数,诸如模型大小或则正则化强度之类的事情会留到稍后,获得正确的stepsize往往是第一步

image-20210702104203485

红色是我们想要的低损失区域,而靠近边缘的蓝色和绿色区域是我们想要避免的更高损耗。我们从空间中某个随机点开始我们的W,然后我们将计算负导数(梯度,斜率)方向,这有望最终将我们指向最小值的方向,如果我们一遍又一遍的重复这一点并向这点移动,我们最终到达确切的最小值

image-20210702104837184

image-20210702104956537

图像特征

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8rpsyBsn-1625210360868)(C:\Users\27750\AppData\Roaming\Typora\typora-user-images\image-20210702110349639.png)]

image-20210702110413727

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ThFJcz3t-1625210360869)(C:\Users\27750\AppData\Roaming\Typora\typora-user-images\image-20210702110538256.png)]

image-20210702110812835

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值