题目
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true
。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false
。
解题思路
详细思路请参考 剑指 Offer 55 - II. 平衡二叉树
代码
解法一:先序遍历 + 深度(从顶至底)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null){
return true;
}
return Math.abs(depth(root.left)-depth(root.right))<=1 && isBalanced(root.left) && isBalanced(root.right);
}
private int depth(TreeNode root){
if(root==null){
return 0;
}
int left = depth(root.left);
int right = depth(root.right);
return Math.max(left, right) + 1;
}
}
解法二:后序遍历 + 剪枝 (从底至顶)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return recur(root) != -1;
}
private int recur(TreeNode root){
if(root == null) return 0;
int left = recur(root.left);
if(left == -1) return -1;
int right = recur(root.right);
if(right == -1) return -1;
return Math.abs(left - right)<=1 ? Math.max(left, right) + 1 : -1;
}
}