目录
以分类问题为例
标签1 | 标签0 | |
预测1 | TP | FP |
预测0 | FN | TN |
1.TP(True Positive)真正例:表示预测为真,实际也为真
2.FP(False Positive)假正例:表示预测为真,实际为假
3.TN(True Negetive)真负例:表示预测为假,实际为假
4.FN(False Negetive)假负例:表示预测为假,实际为真
1.准确率(Accuracy)
即所有预测都正确的比率:
目录
以分类问题为例
标签1 | 标签0 | |
预测1 | TP | FP |
预测0 | FN | TN |
1.TP(True Positive)真正例:表示预测为真,实际也为真
2.FP(False Positive)假正例:表示预测为真,实际为假
3.TN(True Negetive)真负例:表示预测为假,实际为假
4.FN(False Negetive)假负例:表示预测为假,实际为真
即所有预测都正确的比率: