一些算法中的准确率、精确率、召回率和F值

这篇博客介绍了在分类问题中,准确率、精确率、召回率和F值的概念。准确率是预测正确的样本比例,精确率是正确预测为正例的样本占比,召回率是真正例的比例。F值是精确率和召回率的调和平均数,用于综合评估模型性能。文中通过Python的sklearn库展示了计算这些指标的方法。
摘要由CSDN通过智能技术生成

目录

1.准确率(Accuracy)

2.精确率(Precision)

3.召回率(Recall)

4.F值(F-measure)

利用Python中的sklearn实现上述公式计算


以分类问题为例

  标签1 标签0
预测1 TP FP
预测0 FN TN

1.TP(True Positive)真正例:表示预测为真,实际也为真

2.FP(False Positive)假正例:表示预测为真,实际为假

3.TN(True Negetive)真负例:表示预测为假,实际为假

4.FN(False Negetive)假负例:表示预测为假,实际为真

1.准确率(Accuracy)

所有预测都正确的比率:ACC=\frac{TP+TN}{TP+FP+FN+TN}

2.精确率(Precision)

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值