准确率、精确率、召回率、F1-score

本文详细介绍了机器学习中常用的评估指标,包括准确率、精确率、召回率和F1-score。准确率关注整体预测正确的比例,而精确率和召回率分别衡量预测为正例的正确性和找出所有正例的能力。F1-score则是精确率和召回率的调和平均数,用于平衡两者。在样本不平衡的情况下,准确率可能不是最佳指标,而F1-score则能提供更全面的评估。
摘要由CSDN通过智能技术生成

准确率、精确率、召回率、F1-score

混淆矩阵


混淆矩阵中的 P 表示 Positive,即正例或者阳性,N 表示 Negative,即负例或者阴性。

  • TP:预测为1,实际为1,预测正确。
  • FP:预测为1,实际为0,预测错误。
  • FN:预测为0,实际为1,预测错误。
  • TN:预测为0,实际为0,预测正确。
  • TP+FP:表示所有预测为正的样本数量
  • TN+FN:表示所有预测为负的样本数量
  • TP+FN:表示实际为正的样本数量
  • TN+FP:表示实际为负的样本数量

准确率(accuracy)

所有的预测正确(正类负类)的占总的比重
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

精确率(也叫查准率,precision)

P r e c i s i o n = T P T P + F P Precision = \frac {TP}{TP+FP} Precision=TP+FPTP

召回率(recall)

R e c a l l = T P T P + F N Recall = \frac {TP}{TP+ FN} Recall=TP+FNTP

F1-score

2 F 1 = 1 P r e c i s i o n + 1 R e c a l l \frac {2}{F _1} = \frac{1}{Precision} + \frac {1}{Recall} F12=Precision1+Recall1

F 1 = 2 T P 2 T P + F P + F N F1 = \frac {2TP}{2TP+FP+ FN} F1=2TP+FP+FN2TP

各指标优缺点

准确率 样本不均衡的情况下,并不能作为好的指标
精确率 针对预测结果而言
召回率 是针对原样本而言,准确率和召回率互相影响,相互牵制.
F1 是精确率和召回率的调和平均。引入F1-Score作为综合指标,就是为了平衡准确率和召回率的影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发呆的比目鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值