准确率、精确率、召回率、F1-score
混淆矩阵
混淆矩阵中的 P 表示 Positive,即正例或者阳性,N 表示 Negative,即负例或者阴性。
- TP:预测为1,实际为1,预测正确。
- FP:预测为1,实际为0,预测错误。
- FN:预测为0,实际为1,预测错误。
- TN:预测为0,实际为0,预测正确。
- TP+FP:表示所有预测为正的样本数量
- TN+FN:表示所有预测为负的样本数量
- TP+FN:表示实际为正的样本数量
- TN+FP:表示实际为负的样本数量
准确率(accuracy)
所有的预测正确(正类负类)的占总的比重
A
c
c
u
r
a
c
y
=
T
P
+
T
N
T
P
+
T
N
+
F
P
+
F
N
Accuracy=\frac{TP+TN}{TP+TN+FP+FN}
Accuracy=TP+TN+FP+FNTP+TN
精确率(也叫查准率,precision)
P r e c i s i o n = T P T P + F P Precision = \frac {TP}{TP+FP} Precision=TP+FPTP
召回率(recall)
R e c a l l = T P T P + F N Recall = \frac {TP}{TP+ FN} Recall=TP+FNTP
F1-score
2 F 1 = 1 P r e c i s i o n + 1 R e c a l l \frac {2}{F _1} = \frac{1}{Precision} + \frac {1}{Recall} F12=Precision1+Recall1
F 1 = 2 T P 2 T P + F P + F N F1 = \frac {2TP}{2TP+FP+ FN} F1=2TP+FP+FN2TP
各指标优缺点
准确率 样本不均衡的情况下,并不能作为好的指标
精确率 针对预测结果而言
召回率 是针对原样本而言,准确率和召回率互相影响,相互牵制.
F1 是精确率和召回率的调和平均。引入F1-Score作为综合指标,就是为了平衡准确率和召回率的影响