前言
之前写代码的时候都要预先初始化权重,还得担心变量是否会出现被重复定义的错误,但是看网上有直接用tf.layers
构建网络,很简洁的方法。
这里主要尝试了不预定义权重,是否能够实现正常训练、模型保存和调用,事实证明阔以。
验证
训练与模型保存
很简洁的代码直接五十行实现了手写数字的网络训练
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("./TensorFlow-Examples-master/examples/3_NeuralNetworks/tmp",one_hot=True)
steps=5000
batch_size=100
def conv_network(x):
x=tf.reshape(x,[-1,28,28,1])
#第一层卷积
conv1=tf.layers.conv2d(inputs=x,filters=32,kernel_size=[5,5],activation=tf.nn.relu)
conv1=tf.layers.max_pooling2d(conv1,pool_size=[2,2],strides=[2,2])
#第二层卷积
conv2=tf.layers.conv2d(inputs=conv1,filters=64,kernel_size=[3,3],activation=tf.nn.relu)
conv2=tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=[2,2])
#第三层卷积
conv3=tf.layers.conv2d(inputs=conv2,filters=32,kernel_size=[3,3],activation=tf.nn.relu)
conv3=tf.layers.max_pooling2d(inputs=conv3,pool_size=[2,2],strides=[2,2])
#全连接
fc1=tf.layers.flatten(conv3)
fc1=tf.layers.dense(fc1,500,activation=tf.nn.relu)
#输出
fc2=tf.layers.dense(fc1,10)
fc2=tf.nn.softmax(fc2) #因为loss里面用了softmax_cross_enrtopy,所以此行去掉
return fc2
input_img=tf.placeholder(dtype=tf.float32,shape=[None,28*28],name='X')
input_lab=tf.placeholder(dtype=tf.int32,shape=[None,10])
#损失函数
output_lab=conv_network(input_img)
logit_loss=tf.nn.softmax_cross_entropy_with_logits_v2(labels=input_lab,logits=output_lab)
loss=tf.reduce_mean(tf.cast(logit_loss,tf.float32)) #可以去掉,因为softmax_cross_entroy自带求均值
optim=tf.train.AdamOptimizer(0.001).minimize(loss)
#评估函数
pred_equal=tf.equal(tf.arg_max(output_lab,1),tf.arg_max(input_lab,1))
accuracy=tf.reduce_mean(tf.cast(pred_equal,tf.float32))
init=tf.global_variables_initializer()
saver=tf.train.Saver()
tf.add_to_collection('pred',output_lab)
with tf.Session() as sess:
sess.run(init)
for step in range(steps):
data_x,data_y=mnist.train.next_batch(batch_size)
sess.run(optim,feed_dict={input_img:data_x,input_lab:data_y})
if step%100==0 or step==1:
accuracy_val=sess.run(accuracy,feed_dict={input_img:data_x,input_lab:data_y})
print('step'+str(step)+' ,loss '+'{:.4f}'.format(accuracy_val))
print('training finished!!')
saver.save(sess,'./layermodel/CNN_layer')
【更新日志】 2019-9-2
学艺不精,上面由于损失函数用的softmax_cross_entropy_with_logits_v2
,所以输出会被归一化,得分也是一个batch的损失均值,因而构建网络的时候,没必要用最后下面两句话:
loss=tf.reduce_mean(tf.cast(logit_loss,tf.float32))
fc2=tf.nn.softmax(fc2)
调用模型
实现单张手写数字的识别
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import cv2
saver=tf.train.import_meta_graph('./layermodel/CNN_layer.meta')
sess=tf.Session()
saver.restore(sess,'./layermodel/CNN_layer')
graph=tf.get_default_graph()
print(graph.get_all_collection_keys())
#['pred', 'train_op', 'trainable_variables', 'variables']
print(graph.get_collection('trainable_variables'))
prediction=graph.get_collection('pred')
X=graph.get_tensor_by_name('X:0')
#读取图片
image=cv2.imread('./mnist/test/2/2_2.png')
image=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
plt.imshow(image)
plt.show()
#显示图片
input_img=np.reshape(image,[1,28*28])
result=sess.run(prediction,feed_dict={X:input_img})
print(result)
#[array([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)]
后记
其实主要是为了后续使用tf.layers
里面的其它结构比如BN
做准备,因为代码越复杂,写起来越恶心,不如现在看看如何简化代码,第一步就是去除了权重的预定义,后续慢慢研究其它的。
训练代码:链接:https://pan.baidu.com/s/1gmX-YBkz4nNG3RpJ_rEBKQ 密码:o8u2
测试代码:链接:https://pan.baidu.com/s/1ME9pgyM9TNQadmzMeURlNg 密码:5z7k