浅析高斯过程回归(Gaussian process regression)

  • 前言      

       高斯过程回归的和其他回归算法的区别是:一般回归算法给定输入X,希望得到的是对应的Y值,拟合函数可以有多种多样,线性拟合、多项式拟合等等,而高斯回归是要得到函数f(x)的分布,那么是如何实现的呢?

        对于数据集 D:(X,Y),令 f(x^{_{i}})=y_{i},从而得到向量f=[f(x_1),f(x_2),...,f(x_n)], 将所需要预测的x_{i}的集合定义为X*,对应的预测值为f*, 根据贝叶斯公式有:

                                                    p(f*|f)=\frac{p(f|f*)p(f*)}{p(f)}=\frac{p(f,f*)}{p(f)}

       高斯回归首先要计算数据集中样本之间的联合概率分布, f\sim N(\mu ,K)\muf(x_{1}),f(x_{2}),...,f(x_{n})的均值所组成的向量,K为其协方差矩阵,再根据需要预测的f*的先验概率分布 f*\sim N(\mu* ,K*)f\sim N(\mu ,K),来计算出f*的后验概率分布。

       其中共有两个核心问题:(1)如何计算和方差矩阵(2)如何具体如何计算f*的概率分布。

 

{ x_1,x_2,...,x_n}的协方差矩阵,一定要注意是自变量x的协方差矩阵,因为我们在进行对x*对应的f(x*)的预测时,是依据x*和{ x_1,x_2,...,x_n}之间的协方差,来判断其y值之间的差异性,从而基于概率公式得出预测值。
       

  • 协方差矩阵的计算

        定义函数 m(x)=E(f(x))k(x,x^{^{T}})=K,则由概率论基本公式可得:

        f(x)\sim N(m(x),k(x,x^{^{T}}))\\

        m(x)=E(f(x))

        k(x,x^{^{T}})=E(f(x)-m(x)(f(x)-m(x))^{T})

       利用这样的原始公式来计算协方差矩阵K是十分不方便的,我们先来理解一下高斯过程是如何利用Gaussian distribution 来描述样本的,先来看图1和图2:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值