-
前言
高斯过程回归的和其他回归算法的区别是:一般回归算法给定输入X,希望得到的是对应的Y值,拟合函数可以有多种多样,线性拟合、多项式拟合等等,而高斯回归是要得到函数f(x)的分布,那么是如何实现的呢?
对于数据集 ,令 ,从而得到向量, 将所需要预测的的集合定义为,对应的预测值为, 根据贝叶斯公式有:
高斯回归首先要计算数据集中样本之间的联合概率分布, ,为的均值所组成的向量,K为其协方差矩阵,再根据需要预测的的先验概率分布 与,来计算出的后验概率分布。
其中共有两个核心问题:(1)如何计算和方差矩阵(2)如何具体如何计算的概率分布。
{
}的协方差矩阵,一定要注意是自变量x的协方差矩阵,因为我们在进行对对应的的预测时,是依据和{
}之间的协方差,来判断其y值之间的差异性,从而基于概率公式得出预测值。
-
协方差矩阵的计算
定义函数 ,,则由概率论基本公式可得:
利用这样的原始公式来计算协方差矩阵K是十分不方便的,我们先来理解一下高斯过程是如何利用Gaussian distribution 来描述样本的,先来看图1和图2:
|