PyTorch 深度学习实践 第4讲

import torch
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]

w=torch.tensor([1.0])#将参数w声明为一个张量
w.requires_grad=True#声明跟踪w的梯度信息,使得可以PyTorch可以自动计算损失函数关于参数w的梯度

def forward(x):#预测函数
    return x*w
def loss(x,y):#损失函数
    y_pre=forward(x)
    return (y_pre-y)**2
print("before training",4,forward(4).item())

for epoch in range(100):
    for x,y in zip(x_data,y_data):
        l=loss(x,y)#计算当前(x,y)的损失函数
        print("l:",l.item())#输出对于当前参数的损失值
        l.backward()#进行反向传递,得到损失函数关于参数w的梯度
        print("grad:",x,y,w.grad.item())#输出梯度值
        w.data=w.data-0.01*w.grad.data#更新参数w的值,注意w此时是张量
        print(w.grad.data,"****",w.data,"**********************")#打印输出
        w.grad.data.zero_()#将张量w的梯度信息清零,进行下次重新计算梯度值
    print("progress",epoch,l.item())
print("after training",4,forward(4).item())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值