【GAN】基础原理讲解及代码实践

首先什么是GAN:

 

 

 

 

 

 

 

 

GAN的模型结构

 

设计GAN模型的关键:

 

 

 GAN的算法原理:

 

 

 

这里输入噪声的随机性就可以带来生成图像的多样性

 

 

 

 

 GAN公式讲解:

 

 

 

 D(x)表示判别器对真实图片的判别,取对数函数后我们希望其值趋于0,也就是D(x)趋于1,也就是放大损失。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GAN代码实践(基于jupyter,顺序执行即可):

导包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms

torch.__version__

数据准备

# 对数据做归一化 (-1, 1)对gan的输入数据全部规范化到(-1,1)之间
transform = transforms.Compose([   #transform做变形
    transforms.ToTensor(),         # ToTensor会将图像像素值转换为0-1; channel, high, witch,
    transforms.Normalize(0.5, 0.5) #然后我们通过均值为0.5,方差为0.5将数据规范化到(-1,1)
])


train_ds = torchvision.datasets.MNIST('data',
                                      train=True,
                                      transform=transform,
                                      download=True)#定义MNIST数据集


dataloader = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)#加载数据集,打乱,batch_size设置为64
#%%
imgs, _ = next(iter(dataloader))#加载一个批次的图片(64张)
#%%
imgs.shape

 

定义生成器

# 输入是长度为 100 的 噪声(符合正态分布的随机数)
# 输出为(1, 28, 28)的图片
#linear 1 :   100----256
#linear 2:    256----512
#linear 2:    512----28*28
#reshape:     28*28----(1, 28, 28)


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
                                  nn.Linear(100, 256),
                                  nn.ReLU(),
                                  nn.Linear(256, 512),
                                  nn.ReLU(),
                                  nn.Linear(512, 28*28),
                                  nn.Tanh()                     # 对于-1, 1之间的数据分布,Tanh效果最好。输出的取值范围是-1,1之间
        )
    def forward(self, x):              # 前向传播,x 表示长度为100 的noise输入
        img = self.main(x)#将x输入到main模型中 得到img
        img = img.view(-1, 28, 28)#通过view函数reshape成(-1,28,28,1)
        return img

 

定义判别器

## 输入为(1, 28, 28)的图片  输出为二分类的概率值,输出使用sigmoid激活 0-1
# BCEloss计算交叉熵损失

# nn.LeakyReLU   f(x) : x>0 输出 x, 如果x<0 ,输出 a*x  a表示一个很小的斜率,比如0.1
# 判别器中一般推荐使用 LeakyReLU,RELU激活函数在小于0没有任何梯度,会非常难以训练


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()#继承父类的属性
        self.main = nn.Sequential(
                                  nn.Linear(28*28, 512),#输入一张图片28,8,然后展平成28*28,再卷积到256
                                  nn.LeakyReLU(),
                                  nn.Linear(512, 256),
                                  nn.LeakyReLU(),
                                  nn.Linear(256, 1),
                                  nn.Sigmoid()
        )
    def forward(self, x):#x输入的是28,28的图片
        x = x.view(-1, 28*28)#展平
        x = self.main(x)
        return x

初始化模型、优化器及损失计算函数

device = 'cuda' if torch.cuda.is_available() else 'cpu'#默认使用cuda,否则cpu
#%%
gen = Generator().to(device)#初始化Generator模型
dis = Discriminator().to(device)#初始化Discriminator模型
#%%
d_optim = torch.optim.Adam(dis.parameters(), lr=0.0001)#定义优化器,学习率
g_optim = torch.optim.Adam(gen.parameters(), lr=0.0001)
#%%
loss_fn = torch.nn.BCELoss()#二分类判别模型

绘图函数

def gen_img_plot(model, test_input):#每次都给一个同样的test_input正态分布随机数
    prediction = np.squeeze(model(test_input).detach().cpu().numpy())#detach用来截断梯度,放到cpu上,转换为numpy,squeeze用于去掉维度为一的值,鲁棒性更高===>28*28的数组
    fig = plt.figure(figsize=(4, 4))#绘制16张图片
    for i in range(16):#循环
        plt.subplot(4, 4, i+1)#四行四列的第一张
        plt.imshow((prediction[i] + 1)/2)#转换成0,1之间的数值(预测的结果恢复到0,1之间
        plt.axis('off')#关闭
    plt.show()
#%%
test_input = torch.randn(16, 100, device=device)#生成长度为100的一个批次16张的随机噪声输入

 

GAN的训练

D_loss = []
G_loss = []#定义空列表用来放两个模型生成的loss
#%%
# 训练循环
for epoch in range(20):#训练20轮
    d_epoch_loss = 0
    g_epoch_loss = 0#初始化损失函数为0
    count = len(dataloader)#返回批次数,len(dataset)返回样本数
    for step, (img, _) in enumerate(dataloader):#_表示标签,这里生成模型用不到,enumerate用于对dataloader迭代
        img = img.to(device)#将照片上传到设备上
        size = img.size(0)#获批次大小根据这个大小来输入我们随机噪声的输入大小
        random_noise = torch.randn(size, 100, device=device)#生成噪声随机数,大小个数是size
        
        d_optim.zero_grad()#将梯度归0
        
        real_output = dis(img)      # 判别器输入真实的图片,real_output对真实图片的预测结果 真实图片为1,假图片为0
        d_real_loss = loss_fn(real_output, 
                              torch.ones_like(real_output))      # 得到判别器在真实图像上的损失  ones_like:全1数组
        d_real_loss.backward()#反向传播,计算梯度
        
        gen_img = gen(random_noise)
        # 判别器输入生成的图片,fake_output对生成图片的预测
        fake_output = dis(gen_img.detach()) #这里阶段梯度是因为,这里通过对判别器输入生成图片去计算损失是用来优化判别器的。对生成器的参数暂时不做优化。所以梯度不用再传递到生成器模型当中了,我们希望fake_output被判定为0
        d_fake_loss = loss_fn(fake_output,
                              torch.zeros_like(fake_output))      # 得到判别器在生成图像上的损失,zeros_like:全0数组
        d_fake_loss.backward()#同样计算梯度
        #以上是用来优化判别器
        d_loss = d_real_loss + d_fake_loss#判别器的总损失(两部分)
        d_optim.step()#进行优化
        
        g_optim.zero_grad()#梯度归零
        fake_output = dis(gen_img)#将生成图片放到判别器当中--不要梯度截断
        g_loss = loss_fn(fake_output, #我们这里就希望fake_output被判定为1用来优化生成器
                         torch.ones_like(fake_output))      # 生成器的损失
        g_loss.backward()#计算梯度
        g_optim.step()#权重优化
        
        with torch.no_grad():#两个模型的损失函数做累加(不需要计算梯度)---每个批次累加==一个epoch
            d_epoch_loss += d_loss
            g_epoch_loss += g_loss
            
    with torch.no_grad():#得到平均loss
        d_epoch_loss /= count
        g_epoch_loss /= count
        D_loss.append(d_epoch_loss.item())
        G_loss.append(g_epoch_loss.item())#这样列表当中会保存每个epoch的平均loss
        print('Epoch:', epoch)#打印当前epoch
        gen_img_plot(gen, test_input)#绘图

运行效果

 

  • 3
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GAN(Generative Adversarial Networks)是一种生成模型,由 Goodfellow 等人在 2014 年提出。GAN 由一个生成器和一个判别器组成,生成器用于生成假样本,判别器用于区分真实样本和假样本。生成器和判别器通过对抗学习的方式进行训练,最终生成器可以生成与真实数据相似的样本。 下面是一个使用 PyTorch 实现的 GAN 模型代码讲解。 首先,我们需要导入必要的库。 ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt ``` 接着,我们定义生成器和判别器的结构。这里我们使用的是简单的全连接网络。 ```python class Generator(nn.Module): def __init__(self, z_dim, hidden_dim, img_dim): super(Generator, self).__init__() self.z_dim = z_dim self.hidden_dim = hidden_dim self.img_dim = img_dim self.fc1 = nn.Linear(z_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, img_dim) def forward(self, x): x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = torch.tanh(self.fc3(x)) return x class Discriminator(nn.Module): def __init__(self, img_dim, hidden_dim): super(Discriminator, self).__init__() self.img_dim = img_dim self.hidden_dim = hidden_dim self.fc1 = nn.Linear(img_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, 1) def forward(self, x): x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = torch.sigmoid(self.fc3(x)) return x ``` 接着,我们需要定义损失函数和优化器。 ```python z_dim = 100 hidden_dim = 128 img_dim = 784 generator = Generator(z_dim, hidden_dim, img_dim) discriminator = Discriminator(img_dim, hidden_dim) criterion = nn.BCELoss() g_optimizer = optim.Adam(generator.parameters(), lr=0.0002) d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002) ``` 然后,我们需要训练模型。G 和 D 分别进行训练,每次迭代更新 G 和 D 的参数。在每次迭代中,我们先生成一些假样本,然后训练 D 区分真假样本,并更新 D 的参数。接着,我们生成一些假样本,让 D 去判断这些假样本是否为真,然后训练 G,使得生成的假样本越来越接近真实样本。 ```python num_epochs = 20 batch_size = 100 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) for epoch in range(num_epochs): for i, (real_images, _) in enumerate(train_loader): batch_size = real_images.size(0) real_labels = torch.ones(batch_size, 1) fake_labels = torch.zeros(batch_size, 1) z = torch.randn(batch_size, z_dim) fake_images = generator(z) # Train Discriminator real_outputs = discriminator(real_images.view(batch_size, -1)) d_loss_real = criterion(real_outputs, real_labels) fake_outputs = discriminator(fake_images.detach().view(batch_size, -1)) d_loss_fake = criterion(fake_outputs, fake_labels) d_loss = d_loss_real + d_loss_fake d_optimizer.zero_grad() d_loss.backward() d_optimizer.step() # Train Generator z = torch.randn(batch_size, z_dim) fake_images = generator(z) fake_outputs = discriminator(fake_images.view(batch_size, -1)) g_loss = criterion(fake_outputs, real_labels) g_optimizer.zero_grad() g_loss.backward() g_optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), d_loss.item(), g_loss.item())) # Generate some fake images with torch.no_grad(): z = torch.randn(16, z_dim) fake_images = generator(z) fake_images = fake_images.view(-1, 28, 28) plt.imshow(fake_images[0].cpu(), cmap='gray') plt.show() ``` 最后,我们可以使用生成器生成一些假样本,并查看生成的假样本是否与真实样本相似。 ```python with torch.no_grad(): z = torch.randn(16, z_dim) fake_images = generator(z) fake_images = fake_images.view(-1, 28, 28) plt.imshow(fake_images[0].cpu(), cmap='gray') plt.show() ``` 这就是使用 PyTorch 实现 GAN 的完整代码讲解

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值