讲解一些复变函数的基础概念

复变函数积分的定义

代数式: z = x + i y z=x+iy z=x+iy
三角式: z = r ( c o s φ + i s i n φ ) z=r(cos\varphi+isin\varphi) z=r(cosφ+isinφ)
指数式: z = r e i φ z=r e^{i\varphi} z=reiφ

复函数的几何意义

在这里插入图片描述

复数的运算

z 1 = r 1 e i φ 1 z_1=r_1e^{i\varphi_1} z1=r1eiφ1 z 2 = r 2 e i φ 2 z_2=r_2e^{i\varphi_2} z2=r2eiφ2,则
积: z = z 1 + z 2 = r 1 r 2 e i ( φ 1 + φ 2 ) z=z_1+z_2=r_1r_2e^{i(\varphi_1+\varphi_2)} z=z1+z2=r1r2ei(φ1+φ2)
商: z = z 1 z 2 = r 1 r 2 e i ( φ 1 − φ 2 ) z=\frac{z_1}{z_2}=\frac{r_1}{r_2}e^{i(\varphi_1-\varphi_2)} z=z2z1=r2r1ei(φ1φ2)
z = r e i φ z=re^{i\varphi} z=reiφ,则
乘方: z n = r n e i n φ z^n=r^ne^{in\varphi} zn=rneinφ
方根: z n = r n e i ( φ n + 2 k π n ) \sqrt[n]{z}=\sqrt[n]{r}e^{i(\frac{\varphi}{n}+\frac{2k\pi}{n})} nz =nr ei(nφ+n2kπ)
对数: l n z = l n ( r e i φ ) = l n ∣ r ∣ + i φ lnz=ln(re^{i\varphi})=ln|r|+i\varphi lnz=ln(reiφ)=lnr+iφ
幂函数: z n = ( r e i φ ) n = r n e i n φ = r n ( c o s n φ + i s i n n φ ) z^n=(re^{i\varphi})^{n}=r^ne^{in\varphi}=r^n(cosn\varphi+isinn\varphi) zn=(reiφ)n=rneinφ=rn(cosnφ+isinnφ)
z n = e n L n z = e n ( l n ∣ z ∣ + i A r g z ) , k = 0 , ± 1 , ± 2... z^n=e^{nLnz}=e^{n(ln|z|+iArgz)},k=0,\pm1,\pm2... zn=enLnz=en(lnz+iArgz),k=0,±1,±2...

共轭复数

z = x + i y = r e i φ z=x+iy=re^{i\varphi} z=x+iy=reiφ,则 z z z的共轭复数定义 z ∗ = x − i y = r e − i φ z^*=x-iy=re^{-i\varphi} z=xiy=reiφ为复数 z z z的共轭复数, ∣ z ∣ 2 = z z ∗ \lvert z\rvert^2=zz^* z2=zz

欧拉公式

e i φ = ∑ n = 0 ∞ 1 n ! ( i φ ) n = ∑ k = 0 ∞ i 2 k 2 k ! φ 2 k + ∑ k = 0 ∞ i 2 k + 1 2 k + 1 ! φ 2 k + 1 e^{i\varphi}=\sum^{\infty}_{n=0}{\frac{1}{n!}(i\varphi)^n}=\sum^{\infty}_{k=0}{\frac{i^{2k}}{2k!}\varphi^{2k}}+\sum^{\infty}_{k=0}{\frac{i^{2k+1}}{2k+1!}\varphi^{2k+1}} eiφ=n=0n!1(iφ)n=k=02k!i2kφ2k+k=02k+1!i2k+1φ2k+1
= ∑ k = 0 ∞ ( − 1 ) k 2 k ! φ 2 k + ∑ k = 0 ∞ ( − 1 ) k 2 k + 1 ! φ 2 k + 1 =\sum^{\infty}_{k=0}{\frac{(-1)^{k}}{2k!}\varphi^{2k}}+\sum^{\infty}_{k=0}{\frac{(-1)^{k}}{2k+1!}\varphi^{2k+1}} =k=02k!(1)kφ2k+k=02k+1!(1)kφ2k+1
= c o s φ + i s i n φ =cos\varphi+isin\varphi =cosφ+isinφ

三角函数

s i n φ = 1 2 i ( e i φ − e − i φ ) sin\varphi=\frac{1}{2i}(e^{i\varphi}-e^{-i\varphi}) sinφ=2i1(eiφeiφ)
c o s φ = 1 2 ( e i φ + e − i φ ) cos\varphi=\frac{1}{2}(e^{i\varphi}+e^{-i\varphi}) cosφ=21(eiφ+eiφ)

复变函数的定义

若在复数平面上存在点集 E E E,对 E E E的每个点 z = x + i y z=x+iy z=x+iy都有复数 w = u + i v w=u+iv w=u+iv与之对应,则称 w w w z z z的函数, z z z w w w的变量,定义域为 E E E,记为:
w = f ( z ) = u ( x , y ) + i v ( x , y ) , z ∈ E w=f(z)=u(x,y)+iv(x,y), z\in E w=f(z)=u(x,y)+iv(x,y),zE
也即: f : z = x + i y ⟶ w = u + i v f: z=x+iy\longrightarrow w=u+iv f:z=x+iyw=u+iv
定义了一个复变函数实际上定义了两个相关联的实二元函数,因此复函数将具有独特的性质。
例如:
w = f ( z ) = z 2 = ( x + i y ) 2 = x 2 − y 2 + 2 i x y w=f(z)=z^2=(x+iy)^2=x^2-y^2+2ixy w=f(z)=z2=(x+iy)2=x2y2+2ixy
这样 { u ( x , y ) = x 2 − y 2 v ( x , y ) = 2 x y \begin{cases} u(x,y)&=x^2-y^2\\ v(x,y)&=2xy \end{cases} {u(x,y)v(x,y)=x2y2=2xy

导数的定义

w = f ( z ) w=f(z) w=f(z)是在区域 B B B的定义的单值函数。若在 B B B内的某点 Z Z Z,极限:
lim ⁡ △ z → 0 △ w △ z = lim ⁡ △ z → 0 f ( z + △ z ) − f ( z ) △ z \lim \limits_{\triangle z\rightarrow0}\frac{\triangle w}{\triangle z}=\lim \limits_{\triangle z\rightarrow0}\frac{f(z+\triangle z)-f(z)}{\triangle z} z0limzw=z0limzf(z+z)f(z)
存在,且与 △ z → 0 \triangle z\rightarrow0 z0的方向无关,则称函数 w = f ( z ) w=f(z) w=f(z) z z z点可导,称该极限为函数 f ( z ) f(z) f(z) z z z点的导数,记为 f ′ ( z ) f'(z) f(z) d f d z \frac{df}{dz} dzdf
1、当 △ z \triangle z z沿实轴 x x x趋于 0 0 0,即 △ y = 0 , △ z = △ x → 0 \triangle y=0,\triangle z=\triangle x\rightarrow0 y=0,z=x0时,有
lim ⁡ △ z = △ x → 0 f ( z 0 + △ z ) − f ( z 0 ) △ z = = lim ⁡ △ x → 0 u ( x 0 + △ x , y 0 ) + i v ( x 0 + △ x , y 0 ) − u ( x 0 , y 0 ) − i v ( x 0 , y 0 ) △ x = ∂ u ∂ x + i ∂ v ∂ x \begin{array}{ll} \lim \limits_{\triangle z=\triangle x\rightarrow0}\frac{f(z_{0}+\triangle z)-f(z_0)}{\triangle z}&=\\ &=\lim\limits_{\triangle x\rightarrow0}\frac{u(x_0+\triangle x,y_0)+iv(x_0+\triangle x,y_0)-u(x_0,y_0)-iv(x_0,y_0)}{\triangle x}\\ &=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x} \end{array} z=x0limzf(z0+z)f(z0)==x0limxu(x0+x,y0)+iv(x0+x,y0)u(x0,y0)iv(x0,y0)=xu+ixv

2、当 △ z \triangle z z沿虚轴 y y y趋于 0 0 0,即 △ x = 0 , △ z = △ y → 0 \triangle x=0,\triangle z=\triangle y\rightarrow0 x=0,z=y0时,有
lim ⁡ △ z = △ y → 0 f ( z 0 + △ z ) − f ( z 0 ) △ z = = lim ⁡ △ y → 0 u ( x 0 , y 0 + △ y ) + i v ( x 0 , y 0 + △ y ) − u ( x 0 , y 0 ) − i v ( x 0 , y 0 ) i △ y = ∂ v ∂ y − i ∂ u ∂ y \begin{array}{ll} \lim \limits_{\triangle z=\triangle y\rightarrow0}\frac{f(z_{0}+\triangle z)-f(z_0)}{\triangle z}&=\\ &=\lim\limits_{\triangle y\rightarrow0}\frac{u(x_0,y_0+\triangle y)+iv(x_0,y_0+\triangle y)-u(x_0,y_0)-iv(x_0,y_0)}{i\triangle y}\\ &=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y} \end{array} z=y0limzf(z0+z)f(z0)==y0limiyu(x0,y0+y)+iv(x0,y0+y)u(x0,y0)iv(x0,y0)=yviyu
柯西黎曼方程(Cauchy-Riemann,C_R方程)是函数在一点可微的必要条件。

f ′ ( z ) = ∂ u ∂ x + i ∂ v ∂ x = ∂ v ∂ y − i ∂ u ∂ y = ∂ u ∂ x − i ∂ u ∂ y = ∂ v ∂ y + i ∂ v ∂ x \begin{array}{ll} f'(z)&=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}\\ &=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}\\ &=\frac{\partial u}{\partial x}-i\frac{\partial u}{\partial y}\\ &=\frac{\partial v}{\partial y}+i\frac{\partial v}{\partial x} \end{array} f(z)=xu+ixv=yviyu=xuiyu=yv+ixv
也可写成:
{ ∂ u ∂ x = ∂ v ∂ y ∂ v ∂ x = − ∂ u ∂ y \begin{cases} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\\ \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}\\ \end{cases} {xu=yvxv=yu

{ ∂ u ∂ r = 1 r ∂ v ∂ φ 1 r ∂ u ∂ φ = − ∂ v ∂ r \begin{cases} \frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \varphi}\\ \frac{1}{r}\frac{\partial u}{\partial \varphi}=-\frac{\partial v}{\partial r} \end{cases} {ru=r1φvr1φu=rv

解析函数的定义

若函数 f ( z ) f(z) f(z) z 0 z_0 z0点及其邻域上处处可导,则称 f ( z ) f(z) f(z) z 0 z_0 z0解析,在区域E上每点都解析,则称 f ( z ) f(z) f(z)在区域上的解析函数。

解析函数的性质

解析函数的实部和虚部通过柯西黎曼(C-R)方程相互联系:知其中一个函数,可求另一个函数。


  • 25
    点赞
  • 120
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值