对角化原理
有人说,使用数学归纳法和反证法可以演绎整个数学。不管说法对不对,但至少反映了这两种方法的常用和强大;即使有的时候 me 们没有意识到使用了这两种方法,比如证明: 10 个苹果分给 9 个小盆友,肯定有一个小盆友分了至少 2 个苹果。
对角化原理的细节不多说,那说神马 ? O__O"… 说对角化原理的三个问题: 罗素悖论、[0,1) 集合不可数和停机问题。
- 罗素悖论 : S = { s | s ∉ s},试问 S ∈ S 还是 S ∉ S ?
- [0,1) 区间的实数不可数 : 也就是不能一个一个滴全部枚举出来,N 是可以的;N × N 也是可以的;但是 R 是不可以的;
- 不存在一个计算机程序可以正确地判定其他所有的程序是否停机,或是说是否会死循环。
罗素悖论
罗素悖论可以说是一个趣事,因为描述很简单,但是结论却让人很崩溃,O__O"… S = { s | s ∉ s},试问 S ∈ S 还是 S ∉ S ?
- 如果 S ∈ S , 那么 S 应该满足集合的条件 s∉s 也就是 S ∉ S ;
- 如果 S ∉ S , 那么 S 满足条件 s∉s ,所以 S ∈ S ;