对角化原理和停机问题

本文介绍了对角化原理,通过罗素悖论揭示集合论中的矛盾,证明[0,1)区间实数不可数,并探讨了停机问题,说明不存在一个程序能确定所有程序是否停机。通过对halt-x程序的分析,阐述了停机问题的悖论。" 111920556,10547533,MacBook安装Windows双系统:WTG详细教程,"['macos双系统', 'wintogo', 'Windows10企业版', '移动硬盘', 'Boot Camp']
摘要由CSDN通过智能技术生成

对角化原理

有人说,使用数学归纳法反证法可以演绎整个数学。不管说法对不对,但至少反映了这两种方法的常用和强大;即使有的时候 me 们没有意识到使用了这两种方法,比如证明: 10 个苹果分给 9 个小盆友,肯定有一个小盆友分了至少 2 个苹果

对角化原理的细节不多说,那说神马 ? O__O"… 说对角化原理的三个问题: 罗素悖论、[0,1) 集合不可数和停机问题。

  1. 罗素悖论 : S = { s | s ∉ s},试问 S ∈ S 还是 S ∉ S ?
  2. [0,1) 区间的实数不可数 : 也就是不能一个一个滴全部枚举出来,N 是可以的;N × N 也是可以的;但是 R 是不可以的;
  3. 不存在一个计算机程序可以正确地判定其他所有的程序是否停机,或是说是否会死循环。

罗素悖论

罗素悖论可以说是一个趣事,因为描述很简单,但是结论却让人很崩溃,O__O"… S = { s | s ∉ s},试问 S ∈ S 还是 S ∉ S ?

  1. 如果 S ∈ S , 那么 S 应该满足集合的条件 s∉s 也就是 S ∉ S ;
  2. 如果 S ∉ S , 那么 S 满足条件 s∉s ,所以 S ∈ S ;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值