康托的对角论证法

对角论证法乔治·康托尔提出的用于说明实数集合不可数集的证明。

对角线法并非康托关于实数不可数的第一个证明,而是发表在他第一个证明的三年后。他的第一个证明既未用到十进制展开也未用到任何其它数字系统。自从该技巧第一次使用以来,在很大范围内的证明中都用到了类似的证明构造方法。

实数

康托的原始证明表明区间[0,1]中的点数不是可数无穷大。该证明是用反证法完成的,步骤如下:

  1. 假设(从原题中得出)区间[0,1]中的点数是可数无穷大的
  2. 于是乎我们可以把所有在这区间内的数字排成数列(r_1, r_2, r_3, ... )
  3. 已知每一个这类的数字都能以小数形式表达
  4. 我们把这些数字排成数列(这些数字不需按序排列; 事实上,有些可数集, 例如有理数也不能按照数字的大小把他们全数排序,但单只是成数列就没有问题的)在部份有多种表达形式的数字上,例如0.499 ... = 0.500 ..., 我们选择前者.
  5. 举例,如果该数列小数形式表现如下:
    r 1 = 0 . 5 1 0 5 1 1 0 ...
    r 2 = 0 . 4 1 3 2 0 4 3 ...
    r 3 = 0 . 8 2 4 5 0 2 6 ...
    r 4 = 0 . 2 3 3 0 1 2 6 ...
    r 5 = 0 . 4 1 0 7 2 4 6 ...
    r 6 = 0 . 9 9 3 7 8 3 8 ...
    r 7 = 0 . 0 1 0 5 1 3 5 ...
    ...
  6. 考虑r_k小数点后的第k个位,为了方便起见, 我们底间并粗体这些数字,从下图你应明白为什么这个证明被称为对角论证法
    r 1 = 0 .  5 1 0 5 1 1 0 ...
    r 2 = 0 . 4  1 3 2 0 4 3 ...
    r 3 = 0 . 8 2  4 5 0 2 6 ...
    r 4 = 0 . 2 3 3  0 1 2 6 ...
    r 5 = 0 . 4 1 0 7  2 4 6 ...
    r 6 = 0 . 9 9 3 7 8  3 8 ...
    r 7 = 0 . 0 1 0 5 1 3  5 ...
    ...
  7. 我们设一实数x \in [0,1], 其中x是因应以下的方式定义的
    • 如果r_k的第k个小数位等于5, 那么x的第k个小数位是4
    • 如果r_k的第k个小数位不等于5, 那么x的第k个小数位是5
  8. 明显地x是一个在区间[0,1]内的实数,以之前的数为例, 则相对应的x应为 0 . 4 5 5 5 5 5 4 ...
  9. 由于我们假设(r_1,r_2,r_3,... )包括了所有区间[0, 1]内的实数,所以一定有一个r_n=x
  10. 但由于x的特殊的定义,这使到x和r_n的第n个小数位是不同的,所以x \notin (r_1,r_2,r_3,... )
  11. 所以(r_1,r_2,r_3,... )并不能罗列所有区间[0, 1]内的实数,这发生了矛盾。
  12. 所以在第一点内所提出的假设"区间[0,1]中的点数是可数无穷大的"是不成立的。

 

视频讲解

http://v.youku.com/v_show/id_XMTYyMzg2NDc2.html

转载于:https://www.cnblogs.com/LYLtim/articles/2682524.html

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值