DeepSeek 核心技术解密
1. DeepSeek-V3
-
混合专家架构(MoE):DeepSeek-V3 采用 MoE 架构,总参数量达到 6710 亿,但每个输入仅激活 370 亿参数,相比传统密集架构,计算能耗降低了 70%。这种架构不仅提高了效率,还在特定任务中表现出超越密集模型的精度。
-
多头潜在注意力(MLA)机制:在处理长文本时,MLA 机制能够更精准地给句子、段落分配权重,找到文本的核心含义。通过低秩联合压缩机制,MLA 可以将 Key-Value 矩阵压缩为低维潜在向量,显著减少内存占用。
-
无辅助损失负载均衡:在 MoE 架构中,该策略能够有效解决不同专家模块忙闲不均的问题,让各个专家模块的工作负担更加均匀,避免出现部分模块负荷过重而其他模块闲置的现象,从而提升了整个模型的性能。
-
多 Token 预测(MTP):传统模型通常是逐个预测 Token,但 DeepSeek 的 MTP 技术能够一次预测多个 Token,让模型的推理速度更快,并且使生成的内容更加连贯。
-
FP8 混合精度训练:在模型训练过程中,采用更适宜的数据精度,在保证训练准确性的基础上减少计算量,节约时间和成本,使得大规模的模型训练变得更加容易,也使得在极大规模模型上进行训练变得可行且有效。
2. DeepSeek-R1
-
<