【大模型篇】速读版DeepSeek核心技术解密:与 GPT-4、Claude、LLaMA 技术路线差异对比分析

DeepSeek 核心技术解密

1. DeepSeek-V3

  • 混合专家架构(MoE):DeepSeek-V3 采用 MoE 架构,总参数量达到 6710 亿,但每个输入仅激活 370 亿参数,相比传统密集架构,计算能耗降低了 70%。这种架构不仅提高了效率,还在特定任务中表现出超越密集模型的精度。

  • 多头潜在注意力(MLA)机制:在处理长文本时,MLA 机制能够更精准地给句子、段落分配权重,找到文本的核心含义。通过低秩联合压缩机制,MLA 可以将 Key-Value 矩阵压缩为低维潜在向量,显著减少内存占用。

  • 无辅助损失负载均衡:在 MoE 架构中,该策略能够有效解决不同专家模块忙闲不均的问题,让各个专家模块的工作负担更加均匀,避免出现部分模块负荷过重而其他模块闲置的现象,从而提升了整个模型的性能。

  • 多 Token 预测(MTP):传统模型通常是逐个预测 Token,但 DeepSeek 的 MTP 技术能够一次预测多个 Token,让模型的推理速度更快,并且使生成的内容更加连贯。

  • FP8 混合精度训练:在模型训练过程中,采用更适宜的数据精度,在保证训练准确性的基础上减少计算量,节约时间和成本,使得大规模的模型训练变得更加容易,也使得在极大规模模型上进行训练变得可行且有效。

2. DeepSeek-R1

    <
### GPT DeepSeek 的特性、性能及应用场景比较 #### 特性对比 GPT 系列模型基于 Transformer 架构,通过大规模无监督学习有监督微调来实现强大的自然语言处理能力[^3]。相比之下,DeepSeek 是由三星开发的大规模多模态预训练模型,不仅支持文本理解还具备图像识别功能,在跨模态任务方面表现突出。 #### 性能评估 为了公平起见,在相同的三个环境中使用固定查询集进行了测试,结果显示不同模型各有千秋;然而具体到 GPT DeepSeek 的直接较量上并未给出明确的数据说明哪一方绝对占优[^1]。值得注意的是,当采用特定领域内的弱监督信号作为辅助时可以有效提升某些复杂场景下的准确性[^2]。 #### 应用案例分析 由于两者擅长的方向有所区别——前者更侧重于纯文字类的任务如对话生成、机器翻译等;后者则适合涉及视觉内容解析的应用程序比如商品推荐系统中的图片描述匹配或是社交媒体平台上的帖子分类管理等工作流中发挥重要作用。 ```python # 示例代码用于展示如何加载并应用两个不同的AI模型进行推理 import transformers as trfms from deepseek import load_model gpt_model = trfms.AutoModelForCausalLM.from_pretrained('gpt') deepseek_model = load_model('deepseek') text_input = "Once upon a time" image_path = "./example.jpg" output_text_gpt = gpt_model.generate(text_input) output_image_deepseek = deepseek_model.predict(image=image_path) print(f"GPT generated text: {output_text_gpt}") print(f"DeepSeek image prediction result: {output_image_deepseek}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值