数字信号处理技术--平均值和标准偏差

平均值

平均值为所有抽样值加起来,除以总点数。平均值计算公式如下:
μ = 1 N ∑ i = 0 N − 1 x i \mu =\frac{1}{N}\sum\limits_{i=0}^{N-1}{{{x}_{i}}} μ=N1i=0N1xi
在电子学中,平均值被称为直流(DC)值。所谓直流,即频率为0的分量。通过傅里叶变换公式也可以得到上述公式。
μ \mu μ实际上就表示了信号中直流分量的大小。

标准偏差

那么,交流分量的大小如何表示?
用原信号减去直流分量。即 ∣ x i − μ ∣ \left| {{x}_{i}}-\mu \right| xiμ,其表示了每个点上交流分量的大小。 ∣ x i − μ ∣ \left| {{x}_{i}}-\mu \right| xiμ被称为偏差。那么总的交流分量大小怎么表示?
一种是平均偏差:
1 N ∑ i = 0 N − 1 ∣ x i − μ ∣ \frac{1}{N}\sum\limits_{i=0}^{N-1}{\left| {{x}_{i}}-\mu \right|} N1i=0N1xiμ
一种是标准偏差( σ \sigma σ):
σ = 1 N − 1 ∑ i = 0 N − 1 ( x i − μ ) 2 \sigma =\sqrt{\frac{1}{N-1}\sum\limits_{i=0}^{N-1}{{{\left( {{x}_{i}}-\mu \right)}^{2}}}} σ=N11i=0N1(xiμ)2
在统计中,往往使用后者。因为后者和实际的物理场景更为相符。后者实际上是一种平均功率,而前者是一种平均幅度。当存在多个随机噪声时,总噪声功率等于各个噪声功率的叠加,而不是幅度的叠加。 σ 2 {{\sigma }^{2}} σ2被称为方差。关于为何标准偏差或者样本方差的分母为N-1,可以看《样本方差公式推导–为什么样本方差的分母是n-1》一文。
大家比较熟悉的应该是RMS(均方根)值。它既包括了直流也包括了交流。当信号不存在直流分量时,它的RMS值与标准偏差是相等的。RMS(均方根)值公式如下:
R M S = 1 N ∑ i = 0 N − 1 x i 2 RMS=\sqrt{\frac{1}{N}\sum\limits_{i=0}^{N-1}{x_{i}^{2}}} RMS=N1i=0N1xi2
信号的峰峰值与标准偏差之间的关系如下:
在这里插入图片描述

上述计算平均值和标准偏差的公式在实际应用中还存在些许不足:

  1. 如果平均值 μ \mu μ比标准偏差 σ \sigma σ 大很多,就会导致在计算标准偏差时,出现两个值非常接近的数相减,进而导致计算中出现严重的舍入误差。
  2. 当获得新的抽样点时,整个计算需要完全重新计算。
    对上述计算公式进行重新整理,可以解决上述问题:
    σ = 1 N − 1 ∑ i = 0 N − 1 ( x i − μ ) 2 = 1 N − 1 ∑ i = 0 N − 1 ( x i 2 + μ 2 − 2 μ x i ) = 1 N − 1 ( ∑ i = 0 N − 1 x i 2 + ∑ i = 0 N − 1 μ 2 − 2 μ ∑ i = 0 N − 1 x i ) = 1 N − 1 ( ∑ i = 0 N − 1 x i 2 + N μ 2 − 2 N μ 2 ) = 1 N − 1 ( ∑ i = 0 N − 1 x i 2 − N μ 2 ) = 1 N − 1 ( ∑ i = 0 N − 1 x i 2 − 1 N ( ∑ i = 0 N − 1 x i ) 2 ) \begin{aligned} \sigma &=\sqrt{\frac{1}{N-1} \sum_{i=0}^{N-1}\left(x_{i}-\mu\right)^{2}} \\ &=\sqrt{\frac{1}{N-1} \sum_{i=0}^{N-1}\left(x_{i}^{2}+\mu^{2}-2 \mu x_{i}\right)} \\ &=\sqrt{\frac{1}{N-1}\left(\sum_{i=0}^{N-1} x_{i}^{2}+\sum_{i=0}^{N-1} \mu^{2}-2 \mu \sum_{i=0}^{N-1} x_{i}\right)} \\ &=\sqrt{\frac{1}{N-1}\left(\sum_{i=0}^{N-1} x_{i}^{2}+N \mu^{2}-2 N \mu^{2}\right)} \\ &=\sqrt{\frac{1}{N-1}\left(\sum_{i=0}^{N-1} x_{i}^{2}-N \mu^{2}\right)} \\ &=\sqrt{\frac{1}{N-1}\left(\sum_{i=0}^{N-1} x_{i}^{2}-\frac{1}{N}\left(\sum_{i=0}^{N-1} x_{i}\right)^{2}\right)} \end{aligned} σ=N11i=0N1(xiμ)2 =N11i=0N1(xi2+μ22μxi) =N11(i=0N1xi2+i=0N1μ22μi=0N1xi) =N11(i=0N1xi2+Nμ22Nμ2) =N11(i=0N1xi2Nμ2) =N11i=0N1xi2N1(i=0N1xi)2
    这样的计算公式非常方便,当新增点数时,只需要更新总点数、平方和、均值三个参数就行,而在计算这三个参数时,无需所有点参与,只需要本次新增点以及上次的计算结果就可以完成计算。
    在一些情况下,平均值代表已经测量的结果,标准偏差代表噪声或其他影响。此时,标准偏差本身并不重要,重要的是标准偏差与平均值之间的比值。即信噪比(SNR):
    S N R = μ 2 σ 2 SNR=\frac{{{\mu }^{2}}}{{{\sigma }^{2}}} SNR=σ2μ2
    将上式颠倒,就变为变异系数(CV)的计算公式:
    C V = σ 2 μ 2 CV=\frac{{{\sigma }^{2}}}{{{\mu }^{2}}} CV=μ2σ2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值