-
Introduction
这是一篇低光照图像增强的文章,提出了一个新的微光图像增强方法 - - 多分支弱光增强网络(MBLLEN),其核心是完全卷积神经网络。该算法由特征提取模块、增强模块和融合模块三类模块组成。此外该方法还可以应用于视频的低光照处理上。
其思想是:1)通过FEM方法提取不同层次的丰富特征,2)分别通过EM增强多层次特征,3)通过FM多分支融合获得最终输出。通过这种方式,MBLLEN能够从不同方面提高图像质量,并能最大限度地完成微光增强任务。
Contribution
•1) 提出了一种基于深度神经网络的微光图像增强方法。提高了图像的主客观质量。
•2) 我们的方法在抑制低光区域的图像噪声和伪影方面也有很好的效果。
•3) 我们的方法可以直接扩展到利用时间信息处理弱光视频。 -
Network Architecture
如图2所示,所提出的MBLLEN由三种模块组成:特征提取模块(FEM)、增强模块(EM)和融合模块(FM)。
FEM 它是一个具有10个卷积层的单流网络,每个层使用大小为3×3的内核、步长为1和非线性的RELU,没有池化操作。输入到第一层的是彩色图像。每个层的输出既是对下一层的输入,也是对EM相应子网的输入。
EM 它包含多个子网,其数量等于FEM中的层数。子网的输入是FEM某一层的输出,并且输出是一个与原始低光图像相同大小的彩色图像。每个子网都有一个对称的结构,首先应用卷积,然后应用反卷积。第一个卷积层使用了8个大小为3×3的内核,步长为1,非线性的RELU。然后,有三个卷积层和三个反卷积层,使用核大小5×5、步长为1和非线性ReLU,核数分别为16、16、16、16、8和3。请注意,所有子网都是同时训练的,但单独训练,而不共享任何学习参数。
FM 它接受所有EM子网的输出,以产生最终增强的图像。我们将来自EM的所有输出的所有输出连接起来,并使用1×1卷积核将它们合并。这等于具有可学习权重的加权和。 -
Loss Function
总的LOSS:
Structure loss 这种损失是为了提高输出图像的视觉质量而设计的。
Context loss 借鉴了SRGAN中的损失函数,利用VGG网络中的某一层来计算内容损失。
Region loss 40%最暗像素为low_light区域。
-
Result
5.Experiment
-
Conclusion
本文提出了一种新的基于CNN的低光增强方法。现有的方法通常依赖于某些假设,并经常忽略其他因素,如图像噪声。为了解决这些挑战,我们的目标是训练一个强大和灵活的网络来更有效地解决这一任务。我们的网络由FEM、EM和FM三个模块组成。它旨在能够从FEM中的不同层中提取丰富的特征,并通过EM中的不同子网增强它们。通过FM融合多分支输出,它可以产生高质量的结果,并大大优于最先进的水平。还可以对网络进行修改,有效地处理低光视频。
MBLLEN: Low-light Image/Video Enhancement Using CNNs--论文阅读笔记
最新推荐文章于 2024-04-30 01:49:59 发布