keras基础--5.Dropout

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout
from keras.optimizers import SGD

# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape)
#(60000,28,28)->(60000,784)
# -1的意思是可以取任何值,自动判断。/255.0是做归一化
x_train = x_train.reshape(x_train.shape[0],-1)/255.0 
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 转换one-hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)

#创建模型
model = Sequential([
    Dense(units=200,input_dim=784,bias_initializer='one',activation='tanh'),
    Dropout(0.4), # 让40%的神经元工作
    Dense(units=100,bias_initializer='one',activation='tanh'),
    Dropout(0.4),
    Dense(units=10,bias_initializer='one',activation='softmax') 
])

#定义优化器
sgd = SGD(lr=0.2)

#定义优化器,loss_function,训练过程中计算准确率
model.compile(
    optimizer = sgd,
    loss = 'categorical_crossentropy',
    metrics = ['accuracy'],
)

#训练模型
model.fit(x_train,y_train,batch_size=32,epochs=10)

#评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)

loss,accuracy = model.evaluate(x_train,y_train)
print('train loss',loss)
print('train accuracy',accuracy)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值