import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout
from keras.optimizers import SGD
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape)
#(60000,28,28)->(60000,784)
# -1的意思是可以取任何值,自动判断。/255.0是做归一化
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 转换one-hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
#创建模型
model = Sequential([
Dense(units=200,input_dim=784,bias_initializer='one',activation='tanh'),
Dropout(0.4), # 让40%的神经元工作
Dense(units=100,bias_initializer='one',activation='tanh'),
Dropout(0.4),
Dense(units=10,bias_initializer='one',activation='softmax')
])
#定义优化器
sgd = SGD(lr=0.2)
#定义优化器,loss_function,训练过程中计算准确率
model.compile(
optimizer = sgd,
loss = 'categorical_crossentropy',
metrics = ['accuracy'],
)
#训练模型
model.fit(x_train,y_train,batch_size=32,epochs=10)
#评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
loss,accuracy = model.evaluate(x_train,y_train)
print('train loss',loss)
print('train accuracy',accuracy)
keras基础--5.Dropout
最新推荐文章于 2022-07-05 14:43:50 发布