使用Tensorflow2.6, Keras实现MNIST分类

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
# import tensorflow_datasets as tfds

# 制作数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255., x_test / 255.
# 要多加一维通道数才能训练
x_train = tf.expand_dims(x_train, -1)
x_test = tf.expand_dims(x_test, -1)
# 把标签转化成独热编码
y_train = np.float32(tf.keras.utils.to_categorical(y_train, num_classes=10))
y_test = np.float32(tf.keras.utils.to_categorical(y_test, num_classes=10))

# 超参数
batch_size = 64
epoch = 20

# 制作dataset,并且将训练集打乱
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size).shuffle(batch_size * 10)
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batc
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值