超简单但又超有效的基于CNN的暗光成像模型

本文介绍了使用卷积神经网络(CNN)实现的简单暗光成像模型,通过端到端训练处理原始RAW数据,解决极低光照条件下的图像增强问题。与传统复杂算法相比,该模型效果显著,且易于复现。作者提供了真实环境的暗光图像数据集,并展示了模型与其他方法的对比实验结果。
摘要由CSDN通过智能技术生成

【前言】

上次整了个google的纯传统算法的暗光成像的超复杂pipeline的paper,那个确实挺难的,这次我找到了个简单移动的用CNN的暗光成像的模型,复现难度应该会低很多。

以下解读与见解均为我的个人理解,要是我有哪里曲解了,造成了不必要的麻烦,可以联系我删除文章,也可以在评论区留言,我进行修改。也欢迎大家在评论区进行交流,要是有什么有意思的paper也可以留言,我抽空看一下也可以写一些。正文内容中的“作者”二字,均是指paper的作者,我的个人观点会显式的“我”注明。而文中的图基本都是从paper上cv过来的,我也没本事重做这么多的图,况且作者的图弄得还挺好看的。

Paper基本信息

题目:Learning to See in the Dark

作者:Chen Chen, Qifeng Chen, Jia Xu, Vladlen Koltun, 是来自intel lab的工作,这是18年的CVPR,到了现在21年,一作的Chen Chen进了工业界去了苹果,二作的Qifeng Chen留在了学术界去了港科大。

链接:https://cchen156.github.io/paper/18CVPR_SID.pdf

Github:https://github.com/cchen156/Learning-to-See-in-the-Dark

总结:暗光成像的真实环境数据集+基于CNN的暗光成像端到端模型

Paper内容介绍

【Introduction】

拍过照的都知道,暗光成像是一件很难搞的事。一般有两种做法:

  • 拉高ISO提升亮度,但是噪点也会放大,就算做了缩放、直方图拉伸等后处理,由于原本数据信噪比低,效果还是很一般
  • 打开光圈、延长曝光时间、开闪光灯等物理手段,这种各有各的缺点,增加曝光时间会严重受到相机抖动和物体运动
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值