模型结果的解释
- coef:回归系数(Regression coefficient),即模型参数 β0、β1、…的估计值。
- std err :标准差( Standard deviation),也称标准偏差,是方差的算术平方根,反映样本数据值与回归模型估计值之间的平均差异程度 。标准差越大,回归系数越不可靠。
- t:t 统计量(t-Statistic),等于回归系数除以标准差,用于对每个回归系数分别进行检验,检验每个自变量对因变量的影响是否显著。如果某个自变量 xi的影响不显著,意味着可以从模型中剔除这个自变量。
- P>|t|:t检验的 P值(Prob(t-Statistic)),反映每个自变量 xi 与因变量 y 的相关性假设的显著性。如果 p<0.05,可以理解为在0.05的显著性水平下变量xi与y存在回归关系,具有显著性。
- [0.025,0.975]:回归系数的置信区间(Confidence interval)的下限、上限,某个回归系数的置信区间以 95%的置信度包含该回归系数 。注意并不是指样本数据落在这一区间的概率为 95%。
此外,还有一些重要的指标需要关注: - R-squared:R方判定系数(Coefficient of determination),表示所有自变量对因变量的联合的影响程度,用于度量回归方程拟合度的好坏,越接近于 1说明拟合程度越好。
- F-statistic:F 统计量(F-Statistic),用于对整体回归方程进行显著性检验,检验所有自变量在整体上对因变量的影响是否显著。
回归系数正负的解读
如何解释逻辑回归(Logistic regression)系数的含义?
参考文献
[1]使用statsmodels做logistic回归
[2]使用Logistic回归进行统计分析和Python Statsmodels中的预测
[3]statsmodels中的summary解读(使用OLS)
[4]python statsmodel 回归结果提取(回归系数、t值、pvalue、R方、、、、)
[5]python statsmodel 回归结果提取(R方 T值 P-value)
[6]详解用 statsmodels 进行回归分析
[7]logistic回归因变量的类型_回归分析深入探讨
[8]Python数模笔记-StatsModels 统计回归(2)线性回归