自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(673)
  • 资源 (12)
  • 收藏
  • 关注

原创 自动驾驶—CARLA仿真(16)generate_traffic demo

摘要: CARLA的Traffic Generator脚本支持大规模交通流生成,包含车辆/行人批量生成、Traffic Manager智能配置(跟车距离、混合物理模式等)、同步/异步模式切换等功能。通过蓝图过滤、原子化批量操作(100辆车生成<2秒)和资源安全管理,实现高效稳定的交通仿真。适用于自动驾驶压力测试,支持高密度交通、夜间场景等配置,是工业级仿真测试的核心工具。关键特性包括混合物理优化、行人行为多样性及可复现实验设计。

2025-12-17 09:31:44 538

原创 自动驾驶—CARLA仿真(15)get_component_test demo

本文介绍了通过CARLA仿真引擎获取车辆组件世界坐标的方法。示例代码演示了如何生成Audi TT车辆并查询其右前转向灯的世界位姿,核心是使用get_component_world_transform()接口。该方法适用于高精度传感器安装、V2X通信、碰撞检测等需要部件级定位的场景,是实现车辆数字孪生的关键技术。文章还解析了连接服务器、车辆生成、坐标查询等关键步骤,并列举了常见组件命名和应用案例。

2025-12-17 09:30:19 188

原创 自动驾驶—CARLA仿真(24)sensor_synchronization demo

多传感器同步采集底层实现示例 该脚本演示了CARLA同步模式下多传感器数据对齐的原理,提供线程安全的数据收集机制。通过配置固定仿真步长(0.2秒/5FPS)和同步模式,确保所有传感器数据在每帧就绪。采用轻量级回调函数将帧号和传感器名入队,使用queue.Queue保证多传感器并发安全。部署3个摄像头、2个LiDAR(不同点云密度)和2个雷达,验证同步机制的鲁棒性。主循环严格检查每帧是否收齐7个传感器数据,超时则警告。与高级封装方案相比,本脚本更适合底层调试和定制开发,是理解CARLA同步机制的最小可行示例。

2025-12-16 17:32:32 231

原创 自动驾驶—CARLA仿真(25)synchronous_mode demo

摘要: 该Python脚本演示了CARLA仿真环境中多传感器同步采集与可视化的实现方法。核心模块包括: CarlaSyncMode:通过上下文管理器确保RGB摄像头与语义分割摄像头数据严格同步,自动对齐仿真帧; 简化路径跟踪:车辆通过路点系统自动移动(非物理模拟); 图像融合显示:将语义分割结果以半透明形式叠加到RGB图像上,使用CityScapes调色板着色; 性能监控:实时显示仿真与渲染FPS。适用于多模态感知算法验证和教学演示,提供约30FPS的稳定数据流。 (149字)

2025-12-16 17:19:27 174

原创 自动驾驶—CARLA仿真(14)draw_skeleton demo

摘要:该Python脚本演示了CARLA仿真中行人骨骼的可视化功能,通过同步模式获取行人68个骨骼节点的3D坐标,并将其投影到RGB图像上。核心功能包括:1)同步处理传感器数据;2)3D到2D坐标转换;3)动态绘制骨架连线和关键点;4)实现摄像机环绕行人运动。适用于人体姿态估计、动作捕捉等研究,支持自定义骨骼拓扑和纯客户端渲染,是构建精确关节标注系统的理想基础。

2025-12-16 10:40:45 442

原创 自动驾驶—CARLA仿真(13)dynamic_weather demo

摘要:该Python脚本实现了动态天气控制功能,用于自动驾驶系统测试。主要包含三个模块:1) Sun类模拟太阳轨迹变化,通过正弦函数实现高度角动态调整;2) Storm类采用状态机设计模拟风暴生命周期,联动控制云量、降雨、积水等参数;3) Weather类集成天气系统。支持通过speed_factor参数控制天气变化速度,实现物理一致的时间缩放效果。该工具能生成渐进式天气变化,适用于摄像头、LiDAR等传感器在复杂天气条件下的性能测试,特别适合需要长时间环境变化验证的场景。

2025-12-16 10:40:39 420

原创 自动驾驶—CARLA仿真(12)client_bounding_boxes demo

本文介绍了一个基于CARLA的客户端3D边界框可视化示例,展示了如何在纯Python环境下实现车辆3D边界框的实时计算与绘制。该方案不依赖服务端,仅需RGB摄像头和车辆列表数据,通过完整的3D→2D投影管线,将车辆bounding_box转换为2D像素坐标。核心包括坐标变换链(局部→世界→相机→像素)、相机内参校准以及深度过滤等关键技术,是学习自动驾驶3D目标检测基础的重要案例。

2025-12-16 10:05:33 450

原创 自动驾驶—CARLA仿真(11)bounding_boxes demo

本文介绍了一个基于CARLA仿真环境的2D/3D边界框生成与可视化系统。该系统通过RGB摄像头和实例分割摄像头获取场景数据,实时计算并绘制2D/3D边界框,同时将边界框、速度、灯光状态等结构化数据保存为JSON格式。核心功能包括:数据结构定义、坐标变换与投影、实例分割解码、边界框生成、可视化系统以及结构化数据导出。该系统支持28类语义标签,可生成精确的3D检测参数,适用于自动驾驶感知算法训练、数据集生成和传感器融合验证,是构建自动驾驶感知pipeline的关键工具。

2025-12-15 18:27:03 636

原创 自动驾驶—CARLA仿真(10)tutorial_gbuffer demo

本文介绍了一个高级传感器数据采集示例,用于在CARLA仿真环境中获取自动驾驶车辆的底层图形数据。该示例通过生成自动驾驶车辆并挂载高分辨率RGB摄像头,同时保存最终渲染图像和所有GBuffer纹理(包括场景深度、法线、材质属性等14+通道)。这些数据适用于计算机视觉研究、神经渲染、图像合成等需要底层图形数据的场景。文章详细解析了GBuffer的概念、主车与摄像头初始化方法、GBuffer启用与监听的核心代码,以及数据输出结构。同时指出该方法的性能开销较大,建议用于离线数据采集,并提醒注意磁盘空间消耗。该示例为

2025-12-15 17:43:01 395

原创 自动驾驶—CARLA仿真(8)tutorial demo

PythonAPI/examples/tutorial.py这是一个 **基础传感器数据采集示例**,演示如何:1. 在仿真中生成一辆主车并启用自动驾驶2. 为主车挂载一个深度摄像头(Depth Camera)3. 将摄像头捕获的图像**自动保存到磁盘**4. 动态调整车辆位置并批量生成 NPC 车辆适用于**数据集生成、传感器调试、自动化测试**等场景。

2025-12-15 16:54:21 439

原创 自动驾驶—CARLA仿真(9)visualize_multiple_sensors demo

car visualize_multiple_sensors 测试用例

2025-12-15 15:07:09 803

原创 自动驾驶—CARLA仿真(7)vehicle_physics demo

carla vehicle_physics 测试用例

2025-12-15 14:50:35 741

原创 自动驾驶—CARLA仿真(6)vehicle_gallery demo

carla vehicle_galler 测试用例

2025-12-15 14:36:09 538

原创 自动驾驶—CARLA仿真(0)报错记录

carla仿真 报错记录

2025-12-12 17:39:36 666

原创 自动驾驶—CARLA仿真(5)Actors与Blueprints

CARLA仿真中的参与者与蓝图管理 CARLA仿真中的核心元素是参与者(Actors),包括车辆、行人、传感器、交通标志和观察者。参与者通过蓝图(Blueprint)模板生成,蓝图包含可修改属性(如颜色、传感器参数)和不可修改属性。蓝图库提供所有可用模板,支持通过ID查询或随机选择。参与者生命周期包括生成(需指定位置和旋转)、操作(物理状态控制)和销毁(需显式调用)。特殊参与者如传感器通过回调函数处理数据流,交通灯可通过API控制状态切换,车辆则支持多种控制模式。注意Python脚本结束时必须显式销毁参与者

2025-12-12 15:26:28 972

原创 自动驾驶—CARLA仿真(4)基础概念

CARLA仿真基础概念摘要 CARLA采用客户端-服务器架构:服务器运行仿真,客户端通过API控制。核心对象包括: Client:连接服务器的终端(默认端口2000),支持多客户端并行 World:仿真环境单例,管理地图、天气、参与者等 提供两种运行模式: 异步模式(默认):服务器自主推进仿真 同步模式:客户端通过tick指令逐帧控制,适用于数据采集和严格同步场景 关键功能: Recorder:二进制记录仿真状态,支持精确回放 渲染选项:支持Epic/Low画质模式及离屏渲染优化性能 (字数:150)

2025-12-12 14:52:23 907

原创 自动驾驶—CARLA仿真(3) 坐标和坐标变换

本文介绍了CARLA仿真引擎中的坐标系系统。CARLA采用Unreal Engine的左手坐标系,X轴向前,Y轴向右,Z轴向上,使用米和度作为单位。参与者(如车辆、行人)拥有各自的局部坐标系,原点通常位于包围盒中心附近。CARLA API提供了Location、Rotation和Transform类来处理坐标变换,支持全局坐标与局部坐标之间的转换。此外,CARLA还支持地理坐标转换,通过OpenDRIVE文件中的地理参考信息实现大地坐标与CARLA世界坐标的相互映射。这些功能为自动驾驶仿真中的定位和感知系统

2025-12-12 14:33:57 871

原创 自动驾驶—CARLA仿真(2)入门指南

CARLA是一款开源的自动驾驶仿真平台,提供逼真的城市环境和车辆模型。通过Python API,用户可以加载不同地图、添加车辆和传感器,并利用交通管理器控制NPC车辆行驶。主车(Ego Vehicle)是仿真核心,可安装多种传感器采集数据用于算法训练。CARLA支持同步/异步模式,包含8种不同风格的地图,涵盖城市、乡村和高速公路场景,为自动驾驶研发提供安全高效的测试环境。

2025-12-12 11:21:54 1064

原创 自动驾驶—CARLA 仿真(1)安装与demo测试

CARLA是一个开源的自动驾驶仿真平台,基于Unreal Engine构建,提供高保真图形渲染和多种传感器模拟。它具有可编程交通、开放地图编辑、Python/C++ API和ROS集成等特点,适用于自动驾驶算法开发、测试和多智能体仿真等场景。用户可通过官网下载安装包,支持Windows和Linux系统运行。CARLA凭借其高仿真度和灵活性,已成为自动驾驶领域主流的仿真工具,为算法验证提供安全高效的虚拟测试环境。

2025-12-11 16:39:36 1160

原创 视频动作视频-TimeSformer

TimeSformer:基于纯Transformer的视频理解开创者 TimeSformer是首个完全基于Transformer架构的视频理解模型,摒弃了传统3D卷积,通过时空注意力机制直接建模视频中的全局依赖关系。其核心创新包括:1)将视频分解为3D时空块;2)提出四种注意力策略(全局/分离/空间/时间),其中分离式时空注意力在降低计算复杂度的同时保持性能。该模型在动作识别任务中展现出优于传统卷积方法的性能,验证了纯注意力机制处理视频的可行性,但也面临计算量大、训练成本高等挑战。TimeSformer为视

2025-12-09 14:00:08 830

原创 大模型训练:LLaMA-Factory快速上手

本文介绍了使用LLaMA-Factory进行大模型微调的完整流程:1)环境配置(推荐CUDA环境+≥24GB显存GPU);2)数据准备(Alpaca格式JSON文件);3)多GPU训练流程(以LoRA微调Qwen-7B为例),包括配置文件设置和训练脚本参数说明。重点展示了如何通过accelerate启动分布式训练,包含显存优化策略(梯度累积、混合精度)和关键超参数配置(学习率调度、Lora参数等)。完整代码示例可供直接复现。

2025-12-09 13:52:41 476 1

原创 图像融合-泊松融合

泊松融合是一种实现图像无缝拼接的技术,通过求解泊松方程在梯度域上保持连续性。该方法首先计算源图像和目标图像的梯度场,将源图像梯度覆盖到目标区域,然后构建稀疏矩阵方程求解最优像素值。核心步骤包括:1)计算ROI区域和背景图像的梯度场;2)融合梯度场;3)利用拉普拉斯卷积核求解散度;4)构建并求解泊松方程Ax=b。该方法能有效保留源图像纹理特征,实现自然过渡的融合效果,在OpenCV等工具中已有成熟实现。相关论文和代码资源为研究者提供了详细参考。

2025-12-09 13:43:00 1228

原创 Transformers中的注意力方法简述

本文总结了多种高效注意力机制实现方案及其适用场景。FlashAttention系列(v2/v3)通过tiling和kernel融合技术显著提升训练和推理速度,尤其适合长序列任务。PagedAttention采用分页式KV缓存管理,极大提升推理服务吞吐量,是vLLM项目的核心技术。PyTorch的SDPA提供自动选择最优后端的通用接口。FlexAttention支持自定义注意力模式,适合结构化输入。根据具体需求,训练推荐FlashAttention或SDPA,推理服务首选PagedAttention,特殊模式

2025-12-08 17:12:20 951

原创 YUV格式介绍

YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样可以显示完整的图像,只不过是黑白的,这样的设...

2025-12-08 17:03:04 883

原创 深度学习框架keras使用—(1)CNN经典模型:VGGNet

2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名。VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了16~19层深的卷积神经网络,证明了增加网络的...

2025-12-08 17:02:13 696

原创 initUndistortRectifyMap函数

CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs, InputArray R, InputArray newCameraMatrix, Size size, i...

2025-12-08 17:00:46 133

原创 旋转量化精度验证

SpinQuant量化技术通过正交旋转(如Hadamard变换)将神经网络激活值中的异常值(outliers)均匀分散到多个通道中。该方法利用正交变换的保范数特性和Hadamard矩阵的"混频"效应,将原本集中在少数通道的高动态范围数值重新分配,使各通道数值分布更均衡。实验表明,在4-bit量化场景下,该方法能将量化误差降低14倍(从0.148降至0.0105),有效保留小数值信息。这种技术特别适合处理LLM中FFN层的结构化稀疏激活值,为低比特量化提供了更鲁棒的解决方案。

2025-11-21 11:42:20 60

原创 IQ4_NL量化测试

本文介绍了IQ4_NL量化技术,该技术将32个权重组织为一个块,并使用FP16块缩放因子,其模型大小与Q4_0和Q4_K_S相同。关键创新在于采用非线性映射将量化值转换为权重,显著提升了量化质量(困惑度接近Q4_K_S)。虽然推理性能与Q4_0相当(Metal平台上稍慢8%-20%),但文章指出通过行式实现并改用int8_t块缩放因子,可将比特率降至4.25bpw而不影响量化误差。文中的Python实现展示了完整的CPU版IQ4_NL量化器,包括256权重逻辑块的量化/反量化方法,以及基于官方LUT值的非线

2025-11-13 17:52:33 407

原创 Optimum:onnx模型量化

摘要:本文介绍了模型量化技术,包括动态量化和静态量化两种方法,以及校准步骤中的不同技术选择。量化通过使用低精度数据类型(如int8)降低模型推理时的计算和内存成本。文章详细说明了将模型量化为int8的具体步骤,并介绍了Hugging Face Optimum库提供的量化工具。最后给出了官方测试用例,包括模型转换、动态/静态量化实现以及量化模型的推理验证代码示例,展示了完整的量化流程。

2025-10-29 16:25:17 988

原创 Optimum 将qwen3转onnx

特性是否使用 KV 缓存❌ 否✅ 是推理效率低(重复计算)高(增量计算)适合生成长度短长ONNX 模型复杂度简单较复杂(含 past/future 输入输出)推理代码复杂度简单需管理缓存状态推荐用途调试、简单 demo生产部署、性能敏感场景。

2025-10-28 11:40:35 1308

原创 Optimum 模型转换、部署优化工具

🤗 Optimum是Hugging Face推出的Transformer扩展库,专注于模型性能优化,支持多种硬件平台和开源框架。它提供针对NVIDIA、AMD、Intel、AWS等硬件的专用加速方案,并集成ONNX Runtime、ExecuTorch等工具,简化模型优化流程。通过Optimum,开发者可以轻松实现模型训练和推理的效率提升,充分发挥各类设备的性能优势。

2025-10-28 10:21:59 466

原创 《Hands-On Large Language Models 动手实践大语言模型》第一章: 初识LLM

《动手实践大语言模型》第一章摘要:本章介绍了语言人工智能(Language AI)与大语言模型(LLMs)的核心概念。自GPT-2和ChatGPT问世以来,LLMs已深刻改变了人机交互方式。本章首先回顾了语言AI的发展历程,从早期的词袋模型到word2vec词嵌入技术,展示了如何通过稠密向量捕捉语义关系。书中强调,LLMs不仅是单一模型,更代表着一整套语言处理技术生态。本章为后续内容奠定基础,重点解答了语言AI定义、LLMs概念、应用场景及实践方法等核心问题。配套代码库见GitHub项目。

2025-10-27 19:21:48 1147

原创 大模型基础:如何理解RoPE“高频编码短距离差异、低频编码长距离趋势”

RoPE位置编码通过不同频率的维度区分位置信息:高频维度(低i)随位置剧烈变化,能敏锐捕捉相邻token的差异;低频维度(高i)变化缓慢,保留长距离趋势信息。数学上,每个维度的旋转角度θ_i=1/10000^(2i/d)×pos,高频维度在短距离差异显著(如i=0时pos=1和2的cos值差0.96),低频维度在长距离才显现变化(如i=64时pos需达到10000角度才变化1弧度)。这种设计使模型同时兼顾局部位置区分和全局趋势感知。

2025-10-24 14:56:18 445

原创 Qwen3RotaryEmbedding 源码解析

Qwen3RotaryEmbedding 是 Qwen3 模型实现旋转位置编码 (RoPE) 的核心组件。该模块通过初始化函数配置频率参数,支持多种 RoPE 变体(如线性缩放、动态 NTK 等)。在前向传播时,基于位置 ID 计算角度频率,生成旋转矩阵所需的 sin/cos 值,并应用可选缩放因子。关键特性包括:支持最大序列长度缓存、动态 RoPE 调整装饰器、以及高效的内存管理(通过 register_buffer 存储参数)。该实现兼容不同数据精度,最终输出与输入张量类型一致的旋转编码。

2025-10-24 14:24:57 938

原创 大模型基础:Rotary Position Embedding(RoPE)

RoPE(旋转式位置编码)已成为当前大语言模型的主流位置编码方式。它通过二维向量旋转建模token间的相对位置关系,使注意力得分仅依赖位置差值而非绝对位置。RoPE采用频率递减的正弦波定义旋转角度,既支持长度外推又保持数学优雅性。相比传统方法,RoPE具有显式建模相对位置、正交变换、高效实现等优势,兼容KV缓存并支持动态扩展。主流模型如LLaMA、Qwen等均采用RoPE及其变体(如NTK-aware),使其成为处理长上下文任务的首选方案。

2025-10-24 14:19:34 726

原创 大模型基础:SwiGLU

摘要: SwiGLU(SiLU + GLU)是当前大模型前馈网络(FFN)的主流架构,通过SiLU激活函数实现动态门控,解决了传统FFN表达受限和梯度不稳定问题。其核心公式为$\text{SwiGLU}(x) = \text{SiLU}(W_g x) \otimes (W_v x)$,结合三个线性层(gate/up/down投影)实现输入输出同维。相比传统GeLU-FFN,SwiGLU具备三大优势:动态特征选择能力、平滑梯度流和更高训练稳定性,被LLaMA、Qwen等模型采用。变体包括GeGLU、并行计算等

2025-10-24 13:47:25 599

原创 大模型基础:SDPA注意力

本文详细介绍了Transformer中的核心组件——缩放点积注意力(Scaled Dot-Product Attention)机制。该机制通过计算查询(Q)与键(K)的点积相似度,经过缩放因子(1/√d_k)调整后,用softmax归一化为注意力权重,最后与值(V)加权求和得到输出。文章从公式定义、直观类比、分步计算等多个维度进行解析,包括相似度计算、缩放必要性、softmax归一化等关键步骤,并讨论了其在因果掩码和多头注意力中的应用。通过PyTorch代码示例和维度变化分析,展示了该机制在解码阶段的具体实

2025-10-24 11:35:07 884

原创 vscode debug Transformer源码说明

本文介绍了在conda环境中安装和使用HuggingFace Transformers库的步骤:1)确认conda环境后克隆源码并安装;2)提供测试代码示例,展示如何加载Qwen3-0.6B模型进行文本生成;3)说明在VSCode中调试的方法,包括安装Python插件、选择环境及启动调试。该指南完整覆盖了从安装到调试的整个流程,适合开发者快速上手使用Transformers库。

2025-10-23 17:56:01 233

原创 大模型基础理解:为什么最后一个 hidden state就能预测next token

摘要:自回归语言模型在推理时只需最后一个token的logits,因为其目标是基于历史token预测下一个token。Transformer的因果注意力机制确保最后一个隐藏状态已聚合全部上下文信息。KV Cache技术进一步优化这一过程,通过缓存历史key-value对,使每次解码只需处理最新token。这种设计既符合自回归建模本质,又显著提升推理效率,仅在训练或多路径搜索等特殊场景才需要多个logits。(149字)

2025-10-23 17:34:30 939

原创 Transformers 自回归文本生成主循环 源码解析

这是一个Transformer模型的自回归文本生成主循环源码解析,核心功能是逐token生成文本。关键点包括: 循环控制:通过_has_unfinished_sequences判断是否继续生成,支持多GPU同步 输入准备:动态构建模型输入,包括KV缓存处理 前向推理:区分首次预填充(prefill)和后续解码步骤 输出处理:对logits进行采样或贪婪搜索,支持概率调整 状态更新:维护生成序列和停止条件,支持流式输出 该实现支持多种生成模式(贪婪/采样)、分布式推理和中间结果收集,是Hugging Face

2025-10-23 14:08:25 861

大语言模型 从理论到实践 第二版

大语言模型 从理论到实践 第二版

2025-09-13

1-【清华大学第一版】DeepSeek 从入门到精通.pdf

DeepSeek 从入门到精通

2025-02-21

DeepSeek 15天指导手册-从入门到精通

DeepSeek 15天指导手册-从入门到精通

2025-02-21

如何零成本云端部署deepseek模型

如何零成本云端部署deepseek模型

2025-02-21

清华大学第二版-DeepSeek赋能职场

清华大学第二版-DeepSeek赋能职场

2025-02-21

清华大学DeepSeek+DeepResearch:让科研像聊天一样简单

清华大学DeepSeek+DeepResearch:让科研像聊天一样简单

2025-02-21

清华大学-普通人如何抓住DeepSeek红利

清华大学-普通人如何抓住DeepSeek红利

2025-02-21

自动驾驶中的三维目标检测算法研究综述-2024年11月

本文回顾了近两年内的新兴成果并针对该方 向中的前沿理论进行系统性的阐述。首先,简单介绍三维目标检测的背景知识并回顾相关的综述研究。然后,从数 据规模、多样性等方面对 KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)等多个 流行的数据集进行了归纳总结,并进一步介绍相关基准的评测原理。接下来,按照传感器类型和数量将最近的几十 种检测方法划分为基于单目的、基于立体的、基于多视图的、基于激光雷达的、基于多模态5个类别,并根据模型架 构或数据预处理方式的不同对每一种类别进行更深层次的细分。在每一种类别的方法中,首先对其代表性算法进 行简单回顾,然后着重对该类别中最前沿的方法进行综述介绍,并进一步深入分析了该类别潜在的发展前景和当前 面临的严峻挑战。最后展望了三维目标检测领域未来的研究方向

2025-01-14

ModelNet40-normal-resampled-part2

3D物体识别数据集ModelNet40_normal_resampled,包含40个类别的3D模型,每个类别有55个模型;此资源为part1;

2025-01-13

ModelNet40-normal-resampled-part1

3D物体识别数据集ModelNet40_normal_resampled,包含40个类别的3D模型,每个类别有55个模型;此资源为part1;

2025-01-13

LBP-Learning-Multi-scale-Block-Local-Binary-Patterns-for-Face-Recognition.pdf

MB-LBP特征,全称为Multiscale Block LBP,中科院的人发明的,在Traincascade级联目标训练检测中的LBP特征使用的就是MB-LBP。

2019-05-28

cuda 权威指南习题答案及coda

cuda 权威指南习题答案pdf,以及在Linux code!!!!

2018-07-20

GeoMatch_src(VS2015+OpenCv3.3版)

GeoMatch_src(VS2015+OpenCv3.3版本) 针对https://www.codeproject.com/KB/graphics/Edge_Based_template_match/GeoMatch_src.zip 源码,在Vs2015+opencv3.3 环境下,修改调试ok

2018-10-19

Xilinx_Vivado_SDK_Web_2018.1_0405_1_Win64

最新版,Xilinx_Vivado_SDK_Web_2018.1_0405_1_Win64 。

2018-04-26

vs2015-x64-release下编译glog

vs2015-x64-release下编译glog,自测可用;如果想要debug,模式下的,可在现项目下更改属性后编译

2018-12-05

电路板直线、圆、缺陷检测

利用opencv 距离变换函数,进行直线检测,并标记缺陷;并用opencv 函数进行圆检测

2018-12-06

Edge Based Template Matching.pdf

原文链接https://www.codeproject.com/Articles/99457/Edge-Based-Template-Matching; 其中vs2015+opencv3.3版code:https://download.csdn.net/download/zfjbit/10732568

2018-10-19

Xilinx_Vivado_SDK_2016.4_0124_1_Win64.exe

Xilinx Vivado SDK 2016.4_0124_1_Win64,已验证可用。

2018-04-26

VisionPro_Shape Finding Tools

VisionPro_Shape Finding 帮助文档,英文版说明直线、圆、椭圆的查找

2018-10-18

LK光流算法总结

LK光流算法

2016-07-14

International-Conference-on-Computer-Recognition-Systems CORES 2013

论文集,包括论文Data preprocessing with GPU for DBSCAN

2018-12-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除