深度学习框架Keras学习与应用
深度学习框架Keras学习与应用
JoannaJuanCV
研究方向:图像处理、立体视觉、3D重建;人脸识别等,专注于计算机视觉在无人机和机器人领域的研究和应用。
展开
-
几种常见的循环神经网络结构RNN、LSTM、GRU
几种常见的循环神经网络结构RNN、LSTM、GRU一、循环神经网络(RNN)传统文本处理任务的方法中一般将TF-IDF向量作为特征输入。显而易见,这样的表示实际上丢失了输入的文本序列中每个单词的顺序。在神经网络的建模过程中,一般的前馈神经网络,如卷积神经网络,通常接受一个定长的向量作为输入。卷积神经网络对文本数据建模时,输入变长的字符串或者单词串,然后通过滑动窗口加池化的方式将原先的输入转...原创 2019-01-26 10:35:46 · 8757 阅读 · 0 评论 -
[译] 理解 LSTM 网络
英文版链接:Christopher Olah 的博文 http://colah.github.io/posts/2015-08-Understanding-LSTMs/转载自:https://www.jianshu.com/p/9dc9f41f0b29Recurrent Neural Networks人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基...原创 2019-01-26 10:23:42 · 501 阅读 · 0 评论 -
RNN(循环神经网络)基础篇
1.神经网络基础神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下:将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢? 2.为什么需要RNN(循环神经网络)他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有...原创 2019-01-26 10:13:13 · 456 阅读 · 0 评论 -
keras实战项目:CIFAR-10 图像分类
转自:https://yq.aliyun.com/articles/606966我们可以简单的将深度神经网络的模块,分成以下的三个部分,即深度神经网络上游的基于生成器的 输入模块,深度神经网络本身,以及深度神经网络下游基于批量梯度下降算法的 凸优化模块:批量输入模块各种深度学习零件搭建的深度神经网络凸优化模块其中,搭建深度神经网络的零件又可以分成以下类别:各种深度学习零件搭建的深...原创 2019-01-20 12:03:50 · 699 阅读 · 0 评论 -
卷积神经网络CNN总结
转载自:https://www.cnblogs.com/skyfsm/p/6790245.html从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的:那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 卷积神经网络的层级结构 • 数据输...原创 2019-01-20 11:56:55 · 354 阅读 · 0 评论 -
深度学习框架keras使用—(5)MNIST数据集分类
# -*- coding: utf-8 -*-"""Created on Sat Jan 5 11:16:48 2019@author: Administrator"""import numpy as np# 导入mnist数据库, mnist是常用的手写数字库from keras.datasets import mnist# 导入顺序模型from keras.model...原创 2019-01-05 13:14:09 · 580 阅读 · 4 评论 -
深度学习框架keras使用—(4)Softmax函数
Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等...原创 2019-01-05 11:15:24 · 7734 阅读 · 0 评论 -
深度学习框架keras使用—(3)MNIST数据集介绍
MNIST数据集MNIST数据集是一个手写体数据集,如图:官网:Yann LeCun's website http://yann.lecun.com/exdb/mnist/ , 下载下来的数据集被分成两部分:60000行的训练数据集(其中:60000 行的训练集分拆为 55000 行的训练集和 5000 行的验证集)和10000行的测试数据集。其中,Training set...原创 2019-01-05 11:04:03 · 737 阅读 · 0 评论 -
深度学习框架keras使用—(2)非线性回归
code:# -*- coding: utf-8 -*-"""Created on Sat Jan 5 09:59:55 2019@author: Administrator"""import kerasimport numpy as npimport matplotlib.pyplot as plt#按顺序构成的模型from keras.models import ...原创 2019-01-05 10:22:44 · 874 阅读 · 0 评论 -
深度学习框架keras使用—(1)线性回归
代码段:import kerasimport numpy as npimport matplotlib.pyplot as plt#按顺序构成的模型from keras.models import Sequential#全连接层from keras.layers import Dense#使用numpy生成100个随机点x_data = np.random.rand(100...原创 2019-01-03 13:05:16 · 333 阅读 · 0 评论 -
深度学习框架keras使用—(0)Anaconda 更新numpy
问题: 如下 ImportError: numpy.core.multiarray failed to import更新numpy:在Anaconda Prompt 输入命令:conda update numpy如下: 更新完毕后,在运行,结果如下:...原创 2019-01-03 12:59:51 · 5724 阅读 · 0 评论 -
TensorFlow:基本介绍
http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/basic_usage.html基本使用使用 TensorFlow, 你必须明白 TensorFlow:使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. ...原创 2018-12-21 16:52:56 · 342 阅读 · 0 评论