MIT 18.06 线性代数公开课笔记 Lecture03 矩阵乘法和逆

这篇博客详细介绍了矩阵乘法的四种不同理解方式,包括行与列向量的线性组合,以及分块矩阵的乘法。同时,讨论了逆矩阵的概念,解释了奇异矩阵和非奇异矩阵的区别,并通过Gauss-Jordan消元法展示了如何求解矩阵的逆。
摘要由CSDN通过智能技术生成

矩阵乘法

回顾一下 C = A B C=AB C=AB 中单个元素的求法:
c i , j = ( row i of  A ) ⋅ ( column j of  B ) c_{i,j}=(\text{row i of }A)\cdot(\text{column j of }B) ci,j=(row i of A)(column j of B)
矩阵相乘不一定是方阵, A m × n B n × p = C m × p A_{m\times n}B_{n\times p}=C_{m\times p} Am×nBn×p=Cm×p .

让我们用行和列的方式去思考 A B = C AB=C AB=C :

把矩阵 C C C 想成是 p p p 个列向量, A A A B B B 的第一列得到 C C C 的第一列, 以此类推. 回想一下我们的big picture, 矩阵 A A A 乘一个列向量代表了 A A A 中列向量的线性组合, 也就是说矩阵 C C C 中的每一列都是 A A A 中列向量的线性组合. 这就是矩阵乘法的第二种方法.

而矩阵乘法的第三种方法也就是, 矩阵 C C C 中的每一行都是 B B B 中行向量的线性组合.

矩阵乘法的第四种方法: A B = Sum of  ( column of  A ) × ( row of  B ) AB=\text{Sum of }(\text{column of }A)\times(\text{row of }B) AB=Sum of (column of A)×(row of B)

A A A 中的列乘 B B B 中的行将会得到一个 m × p m\times p m×p 矩阵. 这个矩阵中的每一行都是 B B B 中的行的倍数, 每一列都是 A A A 中的列的倍数:
[ 2 3 4 ] [ 1 6 ] = [ 2 12 3 18 4 24 ] \begin{bmatrix}2\\3\\4\end{bmatrix}\begin{bmatrix}1&6\end{bmatrix}=\begin{bmatrix}2&12\\3&18\\4&24\end{bmatrix} 234[16]=234121824
这个矩阵的行空间(行所有可能的线性组合)是一个直线, 列空间也是一个直线.

矩阵乘法也可以是将矩阵分块, 再对分块之后的矩阵做乘法:
[ A 1 A 2 A 3 A 4 ] [ B 1 B 2 B 3 B 4 ] = [ A 1 B 1 + A 2 B 3 − − − ] A   B =   C \begin{aligned}\begin{bmatrix}A_1&A_2\\A_3&A_4\end{bmatrix}\begin{bmatrix}B_1&B_2\\B_3&B_4\end{bmatrix}&=\begin{bmatrix}A_1B_1+A_2B_3&-\\-&-\end{bmatrix}\\A\qquad\qquad\ B\qquad&=\qquad\qquad\ C\end{aligned} [A1A3A2A4][B1B3B2B4]A B=[A1B1+A2B3]= C
对块做乘法和基础的矩阵乘法很相似.

逆矩阵

A − 1 A = I = A A − 1 A^{-1}A=I=AA^{-1} A1A=I=AA1 if A is invertable or non-singular.

考虑Singular case(奇异矩阵, 也就是不可逆矩阵):
[ 1 3 2 6 ] \begin{bmatrix}1&3\\2&6\end{bmatrix} [1236]
其行列式为0. 事实上用 A A A 去乘某个矩阵, 结果中的列都来自 A A A 中的列, 也就是都会是 A A A 中列的倍数, 不可能得到 1 0 \begin{matrix} 1\\0 \end{matrix} 10 .

方阵 A A A 没有逆. 假设存在非零向量 x \mathbf{x} x 使得 A x = 0 A\mathbf{x}=\mathbf{0} Ax=0 . 事实上, 我们假设 A − 1 A^{-1} A1 存在, A x = 0 A\mathbf{x}=\mathbf{0} Ax=0 两边乘上 A − 1 A^{-1} A1 , 得到 x = 0 \mathbf{x}=\mathbf{0} x=0 , 矛盾.

也就是说, 奇异矩阵的列向量可以通过线性组合得到 0 \mathbf{0} 0 .

考虑可逆矩阵 A = [ 1 3 2 7 ] A=\begin{bmatrix} 1&3\\2&7 \end{bmatrix} A=[1237] , 其列向量指向不同的方向, 其组合可以得到任何向量. 如何求其逆矩阵?
[ 1 3 2 7 ] [ a c b d ] = [ 1 0 0 1 ] A    A − 1     =     I \begin{aligned}\begin{bmatrix}1&3\\2&7\end{bmatrix}\begin{bmatrix}a&c\\b&d\end{bmatrix}&=\begin{bmatrix}1&0\\0&1\end{bmatrix}\\A\ \ \qquad A^{-1}\ \ \ &=\quad\,\ I\end{aligned} [1237][abcd]A  A1   =[1001]= I
可以得到方程组 A [ a b ] = [ 1 0 ] A \begin{bmatrix} a\\b \end{bmatrix}= \begin{bmatrix} 1\\0 \end{bmatrix} A[ab]=[10] A [ c d ] = [ 0 1 ] A \begin{bmatrix} c\\d \end{bmatrix}= \begin{bmatrix} 0\\1 \end{bmatrix} A[cd]=[01] . 求 A A A 的逆和解这两个方程组是一回事.

Gauss-Jordan消元法: 一次解出两个方程组, 使用增广矩阵:
[ 1 3 1 0 2 7 0 1 ] ⟶ [ 1 3 1 0 0 1 − 2 1 ] ⟶ [ 1 0 7 − 3 0 1 − 2 1 ] A I I A − 1 \left[\begin{array}{cc:cc}1&3&1&0\\2&7&0&1\end{array}\right]\longrightarrow\left[\begin{array}{cc:cc}1&3&1&0\\0&1&-2&1\end{array}\right]\longrightarrow\left[\begin{array}{cc:cc}1&0&7&-3\\0&1&-2&1\end{array}\right]\\A\qquad\quad I\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad I\qquad\quad A^{-1} [12371001][10311201][10017231]AIIA1
为什么我们可以得到 A − 1 A^{-1} A1 ? 因为我们对 A A A I I I 左乘了相同的初等矩阵, 当 A A A 变成 I I I , 原来的 I I I 也就变成了 A − 1 A^{-1} A1 .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值