【metaRTC学习】metaRTC的demo运行说明(一)

metaRTC的github的地址为:GitHub - metartc/metaRTC: A cross-platform WebRTC SDK

其作者杨高峰的博客为:metaRTC的博客_CSDN博客-metaRTC,解决方案领域博主

其博客对其自己的demo的运行说明不够详细,刚入门的会一脸懵,本文对其的几个demo进行一些补充说明,以其第5版本为例:

1. metap2p

这个是qt客户端程序,默认的是p2p模式,如下,还没测试推流到服务器的模式

 运行起来后,URL一栏不需要更改,URL应该是用于推流到服务器的

 不需要做任何其他的填写或点击操作,在另一台电脑上使用metap2p6_html进行P2P通信,

url中的ip地址更改为对端的地址,点击“开始”,显示如下

metap2p 客户端显示如下,既可以看到自己电脑摄像头画面,也可以看到p2p对端的画面 

 2. metapushstream与metaplayer

这两个也是qt客户端程序,metapushstream推流到流媒体服务器,metaplayer从流媒体服务器拉流,因此使用这两个demo之前先搭建并运行流媒体服务器

(1)流媒体服务器的搭建与运行

这里选用zlm流媒体服务器,将其编译为支持webrtc推拉流,这里省略其编译过程,网上有教程

编译好后,需要更改其config.ini文件,externIP需要填上服务器所在的IP地址(即MediaServer.exe的运行所在IP)

运行MediaServer.exe,如下: 

 

运行起来后

可以在流媒体服务器本机浏览器打开其demo:https://default.zlmediakit.com/webrtc/

 可以得到zlm的webrtc的推拉流地址

 推流地址为:https://10.1.32.74/index/api/webrtc?app=live&stream=test&type=push

拉流地址为:https://10.1.32.74/index/api/webrtc?app=live&stream=test&type=play

(2)重新编译metapushstream与metaplayer

这两个demo默认的流媒体服务器都是SRS, 需要改为ZLM,并重新编译,如下:

 

(3)修改yang_config.h文件

修改metapushstream运行目录下的yang_config.h,修改zlm webrtc推流的端口,改为8000(可在zlm的config文件中查看)

只需修改该端口即可,其他的不需要更改(其他参数说明详见Wiki - Gitee.com

(4)运行程序

运行metapushstream,在URL中填入推流地址,注意这个demo中的URL仅支持webrtc开头,不支持http/https,因此需将zlm的推拉流地址的http/https更改为webrtc,如下:

推流地址:webrtc://10.1.32.74/index/api/webrtc?app=live&stream=test&type=push,

填好后点击推流,即可向zlm推metartc流

运行metaplayer,填写拉流地址:

webrtc://10.1.32.74/index/api/webrtc?app=live&stream=test&type=play

点击“play”即可从zlm流媒体服务器拉取metaRTC流

### 回答1: 好的。深度学习是机器学习的一种方法,其中机器使用多层神经网络学习和处理数据。一个深度学习的例子可能是使用一个图像分类器来识别图像中的物体。图像分类器是一个深度学习模型,其中输入是图像,输出是图像中物体的类别。为了训练这个模型,我们需要大量的图像数据和对应的标签(例如“狗”、“猫”等)。然后我们使用这些数据来训练模型,使得它能够识别新图像中的物体。 ### 回答2: 深度学习模型是一种人工智能算法,它模仿人脑神经网络的工作原理,通过大量的数据训练模型,从而实现自主学习和精准预测。一个深度学习demo可以是一个针对图像识别的应用。 在这个demo中,我们可以使用一些开源的深度学习框架,如TensorFlow或PyTorch来构建模型。首先,我们需要准备一些图像数据集,例如手写数字、动物图像或车辆图像等。然后,我们可以使用一个具有多层神经网络架构的卷积神经网络(Convolutional Neural Network, CNN)来训练模型。 训练过程中,我们将使用一部分图像数据进行模型训练,另一部分用于验证和测试模型的准确性。通过不断迭代训练,模型能够从数据中学习到识别特定类别的图像。训练的结果会被保存下来,用于之后的预测。 在训练好的模型上,我们可以输入一张未知的图像进行预测。模型将通过学习到的特征和模式,自动判断图像属于哪个类别。例如,如果输入手写数字图像,模型可以预测出数字0到9中的一个。 深度学习demo的最终结果就是一个能够准确识别出图像的模型。通过该demo,我们可以展示深度学习在图像识别领域的应用潜力,向用户展示人工智能的强大功能。 总之,深度学习demo是一个用于展示深度学习算法在图像识别方面应用的示例。通过训练模型,我们可以实现准确和可靠的图像预测,并向用户展示人工智能的强大能力。 ### 回答3: 深度学习是一种机器学习的方法,通过模拟人脑神经网络的工作原理进行模型训练和数据处理。一个深度学习demo可以用来展示深度学习在实际应用中的能力和效果。 这个深度学习demo可以是一个图像识别的应用。首先,我们需要收集一批有标签的图像数据,例如猫和狗的图片,然后将这些图片用来训练深度神经网络模型。训练过程中,模型会通过不断学习和调整权重来提高对不同类别图像的判断能力。 一旦模型训练完成,我们可以用这个demo来测试模型的准确性。用户可以选择一张任意的猫或狗的图片,通过上传或者拍摄的方式输入到demo中。模型会将该图片输入到神经网络中进行处理和分析,最终输出一个判断结果,即该图片是猫还是狗。 通过这个demo,我们可以直观地感受和体验深度学习在图像识别方面的能力。深度学习模型可以通过反复的训练和学习,从大量图像数据中学习到不同物体的特征和模式,并根据这些特征进行分类判断。在许多实际应用中,深度学习已经展现出了出色的表现,比如人脸识别、图像自动标注等领域。 总之,一个深度学习demo可以通过展示图像分类的应用来演示深度学习在实际中的应用价值,同时也能让人们更好地了解深度学习的原理和工作方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值