快速开发CUDA程序的方法

本文基于多年CUDA开发经验,介绍了将CPU串行程序移植到GPU的步骤,包括热点函数分析、仿CUDA格式的CPU程序、GPU数组设计、并行模型设计、基本及优化版本的CUDA程序实现。通过这些方法,可以降低CUDA开发难度,提高并行程序效率。
摘要由CSDN通过智能技术生成

根据几年的CUDA开发经验,简单的介绍下CUDA程序的大概开发步骤,按照先修改CPU串行程序后移植到GPU平台的原理,把需要在GPU上做的工作尽量先在CPU平台上修改,降低了程序的开发难度,同时有利用bug的调试。通过实现一种快速、有效地CUDA并行程序开发的方法,提高CUDA并行程序开发效率,降低CUDA并行程序开发周期和难度。

(1)    CPU串行程序分析

对于CPU串行程序,首先需要测试串行程序中的热点函数,以及分析热点函数的并行性:

a)       热点测试

根据时间的测试结果确定热点函数,作为后面移植的重点代码模块。

b)       并行性分析

找出热点代码后,需要分析热点部分的算法、数据特点,根据算法和数据的特点分析其是否可以并行,是否适合细粒度并行。

c)       确定CUDA内核使用的数组

根据对串行程序的分析,确定哪些模块需要移植到GPU平台上运行,对于需要运行上GPU平台上的代码内的数据进行分析,确定哪些数组需要在CUDA内核中使用,分析CUDA计算时,这些数组传递的方向是CPUtoGPU还是GPUtoCPU,以及每次传递时的数据大小等信息,然后设计这些数组的定义方式和大小。

(2)    仿CUDA格式的CPU串行程序

CUDA程序相对CPU程序比较复杂,当出现bug时,调试的难度也要比CPU程序大很多,为了降低CUDA程序开发难度和周期,可以把一些GPU上的移植工作提前在CPU平台上实现,具体涉及下面几个方面:

a)       修改成可并行算法

对于CPU串行程序,有些代码理论上可以并行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值