数学
zhang11wu4
计算机硕士,专业:计算机应用技术,研究方向:图像图像,重点研究图像分割,包括单目标和多目标的自动分割,图像清晰化,目标检测等。QQ:46454279,仅限技术交流,其他免加.
展开
-
极限的理解及用处
极限的概念应该是初等数学(定值)和高等数学(无限值)的分水岭。高中以前学的数都是定值,但到大学就开始接触无限的概念,让很多同学晕了不少。只所以引入极限,原因是遇到了无法用定值的方法解决的问题,问题永远是科学进步的催化剂。比如在直角坐标系中,任一不规则曲线与X轴所围区域的面积,用原来的任何一个公式都是不能计算出来的。这时就要用到极限的思想,具体方法大家都是知道的,教课书上都有。我国古代就有极限的原创 2012-03-07 08:59:11 · 1669 阅读 · 0 评论 -
为什么高斯分布的函数要这样写?
上面的公式是标准正态公布的密度函数,但为什么公式要这样写?下面是相关原因:也就是说,公式这样写可以保证积分为1,那么为什么用e指数函数?下面是e指数函数图像:e指数函数图像特征:过点(0,1),过第二、第一象限。定义域是R,值域是f(x)>0在定义域内f(x)是随着x的增大而增大。当x -> -∞ 时f(x)=0当x -> +∞ 时f(x)=+∞原创 2016-01-28 18:18:32 · 1736 阅读 · 0 评论 -
特征向量的几何意义
特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍 是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可 以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有转载 2016-01-07 09:40:00 · 1173 阅读 · 0 评论 -
旋转矩阵(Rotate Matrix)的性质分析
学过矩阵理论或者线性代数的肯定知道正交矩阵(orthogonal matrix)是一个非常好的矩阵,为什么这么说?原因有一下几点:正交矩阵每一列都是单位矩阵,并且两两正交。最简单的正交矩阵就是单位阵。正交矩阵的逆(inverse)等于正交矩阵的转置(transpose)。同时可以推论出正交矩阵的行列式的值肯定为正负1的。正交矩阵满足很多矩阵性质,比如可以相似于对角矩阵等等。 以上转载 2015-11-10 16:00:52 · 82852 阅读 · 3 评论 -
高等数学体系结构
说实话,知道这些没有任何用处。难不难也看个人的喜欢和思维习惯,有的人学代数就是很难但学分析会觉得简单,有的人又正好相反。简单地说一下;数学中有“三低三高”之说,也就是指分析、代数和几何三个分支,其中三低是指大学的基础课程,分析主要指数学分析(包括实数理论、微积分理论、级数理论、微分方程等),代数主要指高等代数(包括多项式理论、矩阵理论、向量空间、线性空间等),几何主要指空间解析几何(包括投影几何、转载 2015-09-30 08:57:41 · 7391 阅读 · 0 评论 -
如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧(一)
我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对转载 2014-05-29 19:17:20 · 4389 阅读 · 1 评论 -
如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧(二)
上一篇文章发出来之后,为了掐死我,大家真是很下工夫啊,有拿给姐姐看的,有拿给妹妹看的,还有拿给女朋友看的,就是为了听到一句“完全看不懂啊”。幸亏我留了个心眼,不然就真的像标题配图那样了。我的文章题目是,如果看了这篇文章你“还”不懂就过来掐死我,潜台词就是在你学了,但是没学明白的情况下看了还是不懂,才过来掐死我。另外,想跟很多人抱歉,因为评论太多了,时间有限,不能给每个人回复,还望大家谅解。但是转载 2014-05-29 19:14:51 · 2420 阅读 · 0 评论 -
[转载]压缩跟踪Compressive Tracking综述
感谢香港理工大学的Kaihua Zhang,这是他即将在ECCV 2012上出现的paper:Real-time Compressive Tracking。 这里是他的介绍:一种简单高效地基于压缩感知的跟踪算法。首先利用符合压缩感知RIP条件的随机感知矩对多尺度图像特征进行降维,然后在降维后的特征上采用简单的朴素贝叶斯分类器进行分类。该跟踪算法非常简单,但是实验结果很鲁棒,速度大概转载 2014-02-22 20:27:18 · 4823 阅读 · 0 评论 -
理解矩阵
线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大转载 2013-02-05 17:14:00 · 1474 阅读 · 0 评论 -
特征就是样本
平时的工作就是提特征进行模式识别,在看到PCA时,有点不明白,就是求特征空间的方法没有看明白,后来查相关资料才弄明白,原来特征就是样本,这样模式识别就与概率统计学连接起来了。提取特征时,一般会把一个特征reshape为向量,然后并列排在一起放在矩阵中,这时候,每列是一个样本,而每行就是一维,行数就是维数,同时也是一个随机向量,求PCA找特征空间,每一步就是随机变量的相关矩阵。当然也可把特征resh原创 2012-12-28 13:47:03 · 1441 阅读 · 0 评论 -
协方差函数matlab代码
z=[1,5;3,4;4,6;5,3];%%%matlab函数结果% b=cov(z)% % 2.9167 -0.8333% -0.8333 1.6667%%z_mean=mean(z);result = zeros(2,2);for i = 1:2 for j=1:2 result(i,j)=(z(:,i原创 2012-11-07 11:34:14 · 4331 阅读 · 2 评论 -
详解协方差与协方差矩阵
协方差的定义 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定则X表示x轴可能出现的数,Y表示y轴可能出现的。注意这里是关键,给定了4转载 2012-11-07 11:11:43 · 1131 阅读 · 0 评论 -
数学是对现实问题的高度抽象,任何运算都是对一个表达式的变换
比如:5X6,实际上对5进行了f=6x的变换,实际意义可能是长度上延长6倍,速度上加快6倍等。再明显一些的,y=aCOSx,如果是在直角中,是把斜边转换为临边,x表示转过的角度。在图像的几何变换中,正是利用这样的变换实现了图像的移位。变换可以使某些问题简单化,比如最简单的log()对数运算,实际是把乘方运算变换到另一种简单的形式,然后再变回去,傅立叶变换,小波变换复杂些,在图像处理中起着重要的作用原创 2011-10-12 08:51:13 · 775 阅读 · 0 评论 -
0范数 1范数
1范数" name="image_operate_16161315444076136" alt="0范数 1范数" src="http://s3.sinaimg.cn/middle/6297bc8b4ac63af959812&690" width="240" height="180">0 范数 1范数 就是绝对值之和转载 2012-09-03 11:32:53 · 5577 阅读 · 0 评论 -
特征值与特征向量在图像处理中的应用
原文:http://wenku.baidu.com/view/b29d9148852458fb770b564a.html#摘要:正所谓学以致用,在长期以来的学习过程中,我们真正能够将所学到的知识运用到生活中的能有多少,我们对课本上那些枯燥的公式虽牢记于心,却不知道它的实际用途。在学习了矩阵论以来,虽然知道很多问题的求法,就如矩阵特征值和特征向量,它们有何意义我们却一点不知。我想纯粹的理知识已经转载 2012-06-26 15:28:39 · 15455 阅读 · 0 评论 -
灰度共生矩阵
共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。它是定义一组纹理特征的基础。 一幅图象的灰度共生矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图象的局部模式和它们排列规则的基础。 设f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng转载 2011-05-11 14:59:00 · 896 阅读 · 0 评论 -
函数连续性的概念及用处
函数y=f(x)在点x0的改变趋于0时,它的函数y0也趋近于0,就说函数y=f(x)在x0处连续。两人个函数(y1=f1(x1),y2=f2(x2))用一个大花括号括起来,就成为一个函数,不过这个函数的图形有两条线。在初中时直接这样连起来就行,但一定要注意一个前提,就是这两人函数的定义域是一样的,并且在定义域内这两个函数都是连续的。这两条线相交的点一定是相等的。那么,如果有一个不连续,是不是就原创 2012-03-07 09:57:08 · 6540 阅读 · 0 评论 -
理解FFT(一):为什么用正弦函数进行傅立叶变换
根据线性代数的基本知识Ax=λx , x就是特征向量,λ是特征值,信号A乘以x,只改变了λ大小,而方向没有变化。线性时不变系统LTI的特征向量是e^jwt(1),根据欧拉公式,e^jwt=coswt+jsinwt,从中可以看出,线性时不变系统的特征向量就是正弦(余弦只是正弦改变相位)波,当系统输入正弦波,输出也是正弦波,只是乘了个幅值,这样便以计算。参考链接: (1)https://www.zhi原创 2016-12-27 10:40:25 · 8907 阅读 · 0 评论