多元函数中的泰勒公式的表达
多元函数中最优化问题的目标函数往往是一个复杂的函数,简化问题的时候,通常表达为在某一点的泰勒展开的表达式。与一元函数类似,多元函数中的泰勒公式在应用问题上也具有着举足轻重的作用。
基本思想 不论是多元函数也好,还是一元函数也好,最基本的泰勒公式的展开式基本思想是用多项式函数逼近函数本身。
一元函数的泰勒公式
设函数
f
(
x
)
f(x)
f(x)在点
x
0
x_{0}
x0处的邻域内有
n
+
1
n+1
n+1阶导数,那么就会有泰勒展开式
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
1
2
!
f
′
′
(
x
0
)
(
x
−
x
0
)
2
+
⋯
+
1
n
!
f
(
n
)
(
x
0
)
(
x
−
x
0
)
n
+
R
n
f(x)=f(x_{0})+f^{\prime}(x_{0})(x-x_{0})+\frac{1}{2!}f^{\prime\prime}(x_{0})(x-x_{0})^{2}+\dots+\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+R_{n}
f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯+n!1f(n)(x0)(x−x0)n+Rn
或者表示为
f
(
x
)
=
∑
k
=
0
n
1
n
!
f
(
n
)
(
x
0
)
(
x
−
x
0
)
n
+
R
n
f(x)=\sum\limits_{k=0}^{n}\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+R_{n}
f(x)=k=0∑nn!1f(n)(x0)(x−x0)n+Rn
其中
R
n
R_{n}
Rn被称为余项
R
n
=
1
(
n
+
1
)
!
f
(
n
+
1
)
(
ξ
)
(
x
−
x
0
)
n
+
1
,
ξ
∈
(
x
,
x
0
)
R_{n}=\frac{1}{(n+1)!}f^{(n+1)}(\xi)(x-x_{0})^{n+1},\xi\in{(x,x_{0})}
Rn=(n+1)!1f(n+1)(ξ)(x−x0)n+1,ξ∈(x,x0)
一般地,拉格朗日余项中 ξ = x 0 + θ Δ x , Δ x = x − x 0 , 0 < θ < 1 \xi=x_{0}+\theta\Delta{x},\Delta{x}=x-x_{0},0<\theta<1 ξ=x0+θΔx,Δx=x−x0,0<θ<1。
二元函数的泰勒公式
二元函数的泰勒公式是一元函数的推广。设
f
(
x
,
y
)
f(x,y)
f(x,y)在点
(
x
0
,
y
0
)
(x_{0},y_{0})
(x0,y0)的邻域内含有
n
+
1
n+1
n+1阶的可微函数,那么在
(
x
0
,
y
0
)
(x_{0},y_{0})
(x0,y0)处的泰勒展开式表示为
f
(
x
,
y
)
=
f
(
x
0
,
y
0
)
+
(
Δ
x
∂
∂
x
+
Δ
y
∂
∂
y
)
f
(
x
0
,
y
0
)
+
1
2
!
(
Δ
x
∂
∂
x
+
Δ
y
∂
∂
y
)
2
f
(
x
0
,
y
0
)
+
⋯
+
1
n
!
(
Δ
x
∂
∂
x
+
Δ
y
∂
∂
y
)
n
f
(
x
0
,
y
0
)
+
R
n
f(x,y)=f(x_{0},y_{0})+\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)f(x_{0},y_{0})+\frac{1}{2!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{2}f(x_{0},y_{0})+\dots+\frac{1}{n!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{n}f(x_{0},y_{0})+R_{n}
f(x,y)=f(x0,y0)+(Δx∂x∂+Δy∂y∂)f(x0,y0)+2!1(Δx∂x∂+Δy∂y∂)2f(x0,y0)+⋯+n!1(Δx∂x∂+Δy∂y∂)nf(x0,y0)+Rn
或者表示为和的形式
f ( x , y ) = ∑ k = 0 n 1 k ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) k f ( x 0 , y 0 ) + R n f(x,y)=\sum\limits_{k=0}^{n}\frac{1}{k!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{k}f(x_{0},y_{0})+R_{n} f(x,y)=k=0∑nk!1(Δx∂x∂+Δy∂y∂)kf(x0,y0)+Rn
R n R_{n} Rn为余项
R n = 1 ( n + 1 ) ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) n + 1 f ( x + θ Δ x , y + θ Δ y ) , ( 0 < θ < 1 ) R_{n}=\frac{1}{(n+1)!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{n+1}f(x+\theta{\Delta{x}},y+\theta{\Delta{y}}),(0<\theta<1) Rn=(n+1)!1(Δx∂x∂+Δy∂y∂)n+1f(x+θΔx,y+θΔy),(0<θ<1)
一般情况下,我们使用二元函数中的二阶泰勒公式比较多,表示为如下所示
f
(
x
,
y
)
=
f
(
x
0
,
y
0
)
+
(
f
x
′
f
y
′
)
X
0
(
Δ
x
Δ
y
)
+
1
2
(
Δ
x
Δ
y
)
(
f
x
x
′
′
f
x
y
′
′
f
y
x
′
′
f
y
y
′
′
)
X
0
(
Δ
x
Δ
y
)
+
R
2
f(x,y)=f(x_{0},y_{0})+\left(\begin{array}{cccc} f_{x}^{\prime}&f_{y}^{\prime}\\ \end{array}\right)_{X_{0}}\left(\begin{array}{cccc} \Delta{x}\\ \Delta{y} \end{array}\right)+\dfrac{1}{2}\left(\begin{array}{cccc} \Delta{x}&\Delta{y} \end{array}\right)\left(\begin{array}{cccc} f_{xx}^{\prime\prime}&f_{xy}^{\prime\prime}\\ f_{yx}^{\prime\prime}&f_{yy}^{\prime\prime}\\ \end{array}\right)_{X_{0}}\left(\begin{array}{cccc} \Delta{x}\\ \Delta{y} \end{array}\right)+R_{2}
f(x,y)=f(x0,y0)+(fx′fy′)X0(ΔxΔy)+21(ΔxΔy)(fxx′′fyx′′fxy′′fyy′′)X0(ΔxΔy)+R2
其中
X
0
=
(
x
0
,
y
0
)
X_{0}=(x_{0},y_{0})
X0=(x0,y0)。
多元函数中的泰勒公式
很容易我们推出多元函数中的泰勒公式。设多元函数
f
(
x
1
,
x
2
,
…
,
x
m
)
f(x_{1},x_{2},\dots,x_{m})
f(x1,x2,…,xm)在点
P
(
x
10
,
x
20
,
…
,
x
m
0
)
P(x_{10},x_{20},\dots,x_{m0})
P(x10,x20,…,xm0)的邻域内
n
+
1
n+1
n+1阶可微,则泰勒公式表示为
f
(
x
1
,
x
2
,
…
,
x
m
)
=
f
(
x
10
,
x
20
,
…
,
x
m
0
)
+
(
∑
k
=
0
m
Δ
x
m
∂
∂
x
m
)
f
(
x
10
,
x
20
,
…
,
x
m
0
)
+
⋯
+
1
n
!
(
∑
k
=
0
m
Δ
x
m
∂
∂
x
m
)
n
f
(
x
10
,
x
20
,
…
,
x
m
0
)
+
R
n
f(x_{1},x_{2},\dots,x_{m})=f(x_{10},x_{20},\dots,x_{m0})+\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)f(x_{10},x_{20,\dots,x_{m0}})+\dots+\frac{1}{n!}\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)^{n}f(x_{10},x_{20},\dots,x_{m0})+R_{n}
f(x1,x2,…,xm)=f(x10,x20,…,xm0)+(k=0∑mΔxm∂xm∂)f(x10,x20,…,xm0)+⋯+n!1(k=0∑mΔxm∂xm∂)nf(x10,x20,…,xm0)+Rn
或者表示为
f ( x 1 , x 2 , … , x m ) = ∑ k = 0 n 1 k ! ( ∑ k = 0 m Δ x m ∂ ∂ x m ) k f ( x 10 , x 20 , … , x m 0 ) + R n f(x_{1},x_{2},\dots,x_{m})=\sum\limits_{k=0}^{n}\frac{1}{k!}\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)^{k}f(x_{10},x_{20},\dots,x_{m0})+R_{n} f(x1,x2,…,xm)=k=0∑nk!1(k=0∑mΔxm∂xm∂)kf(x10,x20,…,xm0)+Rn
余项
R
n
R_{n}
Rn为
R
n
=
1
(
n
+
1
)
!
(
∑
k
=
0
m
Δ
x
m
∂
∂
x
m
)
n
+
1
f
(
x
10
+
θ
Δ
x
10
,
x
20
+
θ
Δ
x
20
,
…
,
x
m
0
+
θ
Δ
x
m
0
)
,
0
<
θ
<
1
R_{n}=\frac{1}{(n+1)!}\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)^{n+1}f(x_{10}+\theta{\Delta{x_{10}}},x_{20}+\theta{\Delta{x_{20}}},\dots,x_{m0}+\theta{\Delta{x_{m0}}}),0<\theta<1
Rn=(n+1)!1(k=0∑mΔxm∂xm∂)n+1f(x10+θΔx10,x20+θΔx20,…,xm0+θΔxm0),0<θ<1
一般使用hessian矩阵表示二阶多元函数泰勒公式:
f
(
x
)
=
f
(
x
0
)
+
[
∇
f
(
x
)
]
T
(
x
−
x
0
)
+
1
2
!
(
x
−
x
0
)
T
H
(
x
0
)
(
x
−
x
0
)
+
o
(
ρ
2
)
f(\textbf{x})=f(\textbf{x}_{0})+[\nabla{f(\textbf{x})}]^{T}(\textbf{x}-\textbf{x}_{0})+\dfrac{1}{2!}(\textbf{x}-\textbf{x}_{0})^{T}H(\textbf{x}_{0})(\textbf{x}-\textbf{x}_{0})+o(\rho^{2})
f(x)=f(x0)+[∇f(x)]T(x−x0)+2!1(x−x0)TH(x0)(x−x0)+o(ρ2)
其中
H
(
x
0
)
=
[
∂
2
f
∂
x
1
2
∂
2
f
∂
x
1
x
2
⋯
∂
2
f
∂
x
1
x
m
∂
2
f
∂
x
1
x
2
∂
2
f
∂
x
2
2
⋯
∂
2
f
∂
x
2
x
m
⋯
⋯
⋯
⋯
∂
2
f
∂
x
1
x
m
∂
2
f
∂
x
2
x
m
⋯
∂
2
f
∂
x
m
2
]
H(\textbf{x}_{0})=\left[\begin{array}{cccc} \frac{\partial^{2}{f}}{\partial{x_{1}^{2}}}&\frac{\partial^{2}{f}}{\partial{x_{1}x_{2}}}&\cdots&\frac{\partial^{2}{f}}{\partial{x_{1}x_{m}}}\\ \frac{\partial^{2}{f}}{\partial{x_{1}x_{2}}}&\frac{\partial^{2}{f}}{\partial{x_{2}^{2}}}&\cdots&\frac{\partial^{2}{f}}{\partial{x_{2}x_{m}}}\\ \cdots&\cdots&\cdots&\cdots\\ \frac{\partial^{2}{f}}{\partial{x_{1}x_{m}}}&\frac{\partial^{2}{f}}{\partial{x_{2}x_{m}}}&\cdots&\frac{\partial^{2}{f}}{\partial{x_{m}^{2}}}\\ \end{array}\right]
H(x0)=⎣⎢⎢⎢⎢⎡∂x12∂2f∂x1x2∂2f⋯∂x1xm∂2f∂x1x2∂2f∂x22∂2f⋯∂x2xm∂2f⋯⋯⋯⋯∂x1xm∂2f∂x2xm∂2f⋯∂xm2∂2f⎦⎥⎥⎥⎥⎤
在之后的文章中,笔者会使用牛顿法、拟牛顿法解决多元函数中的最优化问题,这里就会用到多元函数中的泰勒公式。