多元函数中的泰勒公式的表达


多元函数中最优化问题的目标函数往往是一个复杂的函数,简化问题的时候,通常表达为在某一点的泰勒展开的表达式。与一元函数类似,多元函数中的泰勒公式在应用问题上也具有着举足轻重的作用。
基本思想 不论是多元函数也好,还是一元函数也好,最基本的泰勒公式的展开式基本思想是用多项式函数逼近函数本身。

一元函数的泰勒公式

设函数 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处的邻域内有 n + 1 n+1 n+1阶导数,那么就会有泰勒展开式
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + R n f(x)=f(x_{0})+f^{\prime}(x_{0})(x-x_{0})+\frac{1}{2!}f^{\prime\prime}(x_{0})(x-x_{0})^{2}+\dots+\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+R_{n} f(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!1f(n)(x0)(xx0)n+Rn

或者表示为
f ( x ) = ∑ k = 0 n 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + R n f(x)=\sum\limits_{k=0}^{n}\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+R_{n} f(x)=k=0nn!1f(n)(x0)(xx0)n+Rn

其中 R n R_{n} Rn被称为余项
R n = 1 ( n + 1 ) ! f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 , ξ ∈ ( x , x 0 ) R_{n}=\frac{1}{(n+1)!}f^{(n+1)}(\xi)(x-x_{0})^{n+1},\xi\in{(x,x_{0})} Rn=(n+1)!1f(n+1)(ξ)(xx0)n+1,ξ(x,x0)

一般地,拉格朗日余项中 ξ = x 0 + θ Δ x , Δ x = x − x 0 , 0 < θ < 1 \xi=x_{0}+\theta\Delta{x},\Delta{x}=x-x_{0},0<\theta<1 ξ=x0+θΔx,Δx=xx0,0<θ<1

二元函数的泰勒公式

二元函数的泰勒公式是一元函数的推广。设 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)的邻域内含有 n + 1 n+1 n+1阶的可微函数,那么在 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)处的泰勒展开式表示为
f ( x , y ) = f ( x 0 , y 0 ) + ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) f ( x 0 , y 0 ) + 1 2 ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) 2 f ( x 0 , y 0 ) + ⋯ + 1 n ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) n f ( x 0 , y 0 ) + R n f(x,y)=f(x_{0},y_{0})+\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)f(x_{0},y_{0})+\frac{1}{2!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{2}f(x_{0},y_{0})+\dots+\frac{1}{n!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{n}f(x_{0},y_{0})+R_{n} f(x,y)=f(x0,y0)+(Δxx+Δyy)f(x0,y0)+2!1(Δxx+Δyy)2f(x0,y0)++n!1(Δxx+Δyy)nf(x0,y0)+Rn

或者表示为和的形式

f ( x , y ) = ∑ k = 0 n 1 k ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) k f ( x 0 , y 0 ) + R n f(x,y)=\sum\limits_{k=0}^{n}\frac{1}{k!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{k}f(x_{0},y_{0})+R_{n} f(x,y)=k=0nk!1(Δxx+Δyy)kf(x0,y0)+Rn

R n R_{n} Rn为余项

R n = 1 ( n + 1 ) ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) n + 1 f ( x + θ Δ x , y + θ Δ y ) , ( 0 < θ < 1 ) R_{n}=\frac{1}{(n+1)!}\left(\Delta{x}\dfrac{\partial}{\partial{x}}+\Delta{y}\frac{\partial}{\partial{y}}\right)^{n+1}f(x+\theta{\Delta{x}},y+\theta{\Delta{y}}),(0<\theta<1) Rn=(n+1)!1(Δxx+Δyy)n+1f(x+θΔx,y+θΔy),(0<θ<1)

一般情况下,我们使用二元函数中的二阶泰勒公式比较多,表示为如下所示
f ( x , y ) = f ( x 0 , y 0 ) + ( f x ′ f y ′ ) X 0 ( Δ x Δ y ) + 1 2 ( Δ x Δ y ) ( f x x ′ ′ f x y ′ ′ f y x ′ ′ f y y ′ ′ ) X 0 ( Δ x Δ y ) + R 2 f(x,y)=f(x_{0},y_{0})+\left(\begin{array}{cccc} f_{x}^{\prime}&f_{y}^{\prime}\\ \end{array}\right)_{X_{0}}\left(\begin{array}{cccc} \Delta{x}\\ \Delta{y} \end{array}\right)+\dfrac{1}{2}\left(\begin{array}{cccc} \Delta{x}&\Delta{y} \end{array}\right)\left(\begin{array}{cccc} f_{xx}^{\prime\prime}&f_{xy}^{\prime\prime}\\ f_{yx}^{\prime\prime}&f_{yy}^{\prime\prime}\\ \end{array}\right)_{X_{0}}\left(\begin{array}{cccc} \Delta{x}\\ \Delta{y} \end{array}\right)+R_{2} f(x,y)=f(x0,y0)+(fxfy)X0(ΔxΔy)+21(ΔxΔy)(fxxfyxfxyfyy)X0(ΔxΔy)+R2
其中 X 0 = ( x 0 , y 0 ) X_{0}=(x_{0},y_{0}) X0=(x0,y0)

多元函数中的泰勒公式

很容易我们推出多元函数中的泰勒公式。设多元函数 f ( x 1 , x 2 , … , x m ) f(x_{1},x_{2},\dots,x_{m}) f(x1,x2,,xm)在点 P ( x 10 , x 20 , … , x m 0 ) P(x_{10},x_{20},\dots,x_{m0}) P(x10,x20,,xm0)的邻域内 n + 1 n+1 n+1阶可微,则泰勒公式表示为
f ( x 1 , x 2 , … , x m ) = f ( x 10 , x 20 , … , x m 0 ) + ( ∑ k = 0 m Δ x m ∂ ∂ x m ) f ( x 10 , x 20 , … , x m 0 ) + ⋯ + 1 n ! ( ∑ k = 0 m Δ x m ∂ ∂ x m ) n f ( x 10 , x 20 , … , x m 0 ) + R n f(x_{1},x_{2},\dots,x_{m})=f(x_{10},x_{20},\dots,x_{m0})+\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)f(x_{10},x_{20,\dots,x_{m0}})+\dots+\frac{1}{n!}\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)^{n}f(x_{10},x_{20},\dots,x_{m0})+R_{n} f(x1,x2,,xm)=f(x10,x20,,xm0)+(k=0mΔxmxm)f(x10,x20,,xm0)++n!1(k=0mΔxmxm)nf(x10,x20,,xm0)+Rn

或者表示为

f ( x 1 , x 2 , … , x m ) = ∑ k = 0 n 1 k ! ( ∑ k = 0 m Δ x m ∂ ∂ x m ) k f ( x 10 , x 20 , … , x m 0 ) + R n f(x_{1},x_{2},\dots,x_{m})=\sum\limits_{k=0}^{n}\frac{1}{k!}\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)^{k}f(x_{10},x_{20},\dots,x_{m0})+R_{n} f(x1,x2,,xm)=k=0nk!1(k=0mΔxmxm)kf(x10,x20,,xm0)+Rn

余项 R n R_{n} Rn
R n = 1 ( n + 1 ) ! ( ∑ k = 0 m Δ x m ∂ ∂ x m ) n + 1 f ( x 10 + θ Δ x 10 , x 20 + θ Δ x 20 , … , x m 0 + θ Δ x m 0 ) , 0 < θ < 1 R_{n}=\frac{1}{(n+1)!}\left(\sum\limits_{k=0}^{m}\Delta{x_{m}}\frac{\partial}{\partial{x_{m}}}\right)^{n+1}f(x_{10}+\theta{\Delta{x_{10}}},x_{20}+\theta{\Delta{x_{20}}},\dots,x_{m0}+\theta{\Delta{x_{m0}}}),0<\theta<1 Rn=(n+1)!1(k=0mΔxmxm)n+1f(x10+θΔx10,x20+θΔx20,,xm0+θΔxm0),0<θ<1

一般使用hessian矩阵表示二阶多元函数泰勒公式:
f ( x ) = f ( x 0 ) + [ ∇ f ( x ) ] T ( x − x 0 ) + 1 2 ! ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) + o ( ρ 2 ) f(\textbf{x})=f(\textbf{x}_{0})+[\nabla{f(\textbf{x})}]^{T}(\textbf{x}-\textbf{x}_{0})+\dfrac{1}{2!}(\textbf{x}-\textbf{x}_{0})^{T}H(\textbf{x}_{0})(\textbf{x}-\textbf{x}_{0})+o(\rho^{2}) f(x)=f(x0)+[f(x)]T(xx0)+2!1(xx0)TH(x0)(xx0)+o(ρ2)

其中
H ( x 0 ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 x 2 ⋯ ∂ 2 f ∂ x 1 x m ∂ 2 f ∂ x 1 x 2 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 x m ⋯ ⋯ ⋯ ⋯ ∂ 2 f ∂ x 1 x m ∂ 2 f ∂ x 2 x m ⋯ ∂ 2 f ∂ x m 2 ] H(\textbf{x}_{0})=\left[\begin{array}{cccc} \frac{\partial^{2}{f}}{\partial{x_{1}^{2}}}&\frac{\partial^{2}{f}}{\partial{x_{1}x_{2}}}&\cdots&\frac{\partial^{2}{f}}{\partial{x_{1}x_{m}}}\\ \frac{\partial^{2}{f}}{\partial{x_{1}x_{2}}}&\frac{\partial^{2}{f}}{\partial{x_{2}^{2}}}&\cdots&\frac{\partial^{2}{f}}{\partial{x_{2}x_{m}}}\\ \cdots&\cdots&\cdots&\cdots\\ \frac{\partial^{2}{f}}{\partial{x_{1}x_{m}}}&\frac{\partial^{2}{f}}{\partial{x_{2}x_{m}}}&\cdots&\frac{\partial^{2}{f}}{\partial{x_{m}^{2}}}\\ \end{array}\right] H(x0)=x122fx1x22fx1xm2fx1x22fx222fx2xm2fx1xm2fx2xm2fxm22f

在之后的文章中,笔者会使用牛顿法、拟牛顿法解决多元函数中的最优化问题,这里就会用到多元函数中的泰勒公式。

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值